
Preliminary Documentation Release

PDR3057
FORTRAN

PROGRAMMER'S
GUIDE

P/N 3064-001

PRIME'S FORTRAN IV PROGRAMMER'S GUIDE

This guide documents Prime FORTRAN IV and all supporting PRIMOS
operating system features as implemented at Master Disk Revision Level
14. It is organized to make life easier for you, the FORTRAN IV
application programmer.

We assume you know FORTRAN, and will easily adapt to Prime's
implementation and extensions, which are fully define^ in the reference
sections of this guide.

PRIMOS, on the other hand, is a large and versatile operating system.
It is no small task to sift through all the reference documentation for
PRIMOS and its file system, libraries, utilities, and supporting
software to find what you need to get a FORTRAN application running.

To save you the trouble, we've done all that for you in the early
sections of this guide, by:

• Selecting the PRIMOS capabilities that are of key importance to
the FORTRAN programmer

• Presenting these capabilities in the usual order of FORTRAN
program development

• Including all the details on the essential tools

• Summarizing optional, convenience and advanced features

• Leaving out what is irrelevant.

The result is a single document containing everything you need to know
to write, modify, compile, load, execute, and debug most FORTRAN
application programs.

In exceptional cases, you may need to refer to supporting reference
documents (illustrated). For example, this guide gives enough
information on Prime's DBMS, MIDAS and FORMS subsystems for you to
evaluate whether they are useful to your application. To develop
applications using these complex subsystems, however, you need access
to the complete details in the reference documents.

The accompanying table gives guidelines on the tasks that are fully
described in this guide and the extent to which the reference documents
apply.

We hope you will find this to be a helpful guide to the particulars of
FORTRAN programming within the PRIMOS operating system. We invite
comments on the organization and philosophy of this guide, as well as
its contents, accuracy and clarity.

i - 1

All correspondence on suggested changes to this document should be
directed to:

Anthony R. Lewis, Technical Writer
Technical Publications Department
Prime Computer, Inc.
145 Pennsylvania Avenue
Framingham, MA 01701

Acknowledgements:

We wish to thank the members of the FORTRAN PROGRAMMERS GUIDE team and
also the non-team members, both customer and Prime, who contributed to
and reviewed this PDR.

PRIME DOCUMENTATION TYPES

IDR Initial Documentation Release: provides usable, accurate
advanced information without regard to style and format.

PDR Preliminary Documentation Release: provides more complete and
accurate information about the product, but is not in final
format.

FDR Final Documentation Release: a complete product description:
edited, formatted and produced at a high standard
of graphic quality

MAN Manual: early reference documents to be phased out by PDR's and
FDR's.

PTU Prime Technical Update: interim updates to existing documents.

Copyright 1977 by
Prime Computer, Incorporated

145 Pennsylvania Avenue
Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

First Printing November 1977

i - 2

PDR3057 TABLE OF CONTENTS

TABLE OF CONTENTS

PART I - OVERVIEW

SECTION 1 OVERVIEW

INTRODUCTION
CONVENTIONS AND DEFINITIONS
FORTRAN FEATURE SUMMARY
FORTRAN UNDER PRIMOS
SYSTEM RESOURCES SUPPORTING FORTRAN
SAMPLE PROGRAM DEVELOPMENT

1-1
1-5
1-8
1-8
1-13
1-14

PART II - USING FORTRAN UNDER PRIMOS

SECTION 2 ACCESSING PRIMOS

SECTION 3 ENTERING AND MANIPULATING SOURCE PROGRAMS

ENTRY FROM OTHER MEDIA
ENTERING AND MODIFYING PROGRAMS - THE EDITOR
LISTING PROGRAMS
RENAMING AND DELETING FILES

3-1
3-5
3-13
3-14

SECTION 4 COMPILING

INTRODUCTION
USING THE COMPILER
END OF COMPILATION MESSAGE
COMPILER ERROR MESSAGES
COMPILER PARAMETERS

4-1
4-1
4-2
4-3
4-3

SECTION 5 LINKING AND LOADING

INTRODUCTION
USING THE LOADER UNDER PRIMOS
FREQUENTLY USED LOADER COMMANDS

Loader Error Messages
LESS FREQUENTLY USED LOADER COMMANDS
SYSTEMS LEVEL COMMANDS

5-1
5-4
5-8
5-15
5-17
5-21

November 1977

PDR3057

SECTION 6 LOADING SEGMENTED PROGRAMS

INTRODUCTION 6-1
SEGMENTED RUNFILES 6-1
SEG'S LOADER 6-1
SEG COMMANDS 6-3
SEG MESSAGES 6-6

Error Messages 6-6
USING SEG 6-6
FREQUENTLY USED AND ESSENTIAL COMMANDS 6-7
EXAMPLE OF A LOAD 6-10

SECTION 7 EXECUTING PROGRAMS

INTRODUCTION 7-1
PROGRAM MEMORY IMAGES SAVED BY THE LINKING LOADER 7-1
SEGMENTED RUNFILES SAVED BY SEG'S LOADER 7-2
RUN-TIME ERROR MESSAGES 7-3
INSTALLATION IN THE COMMAND UFD 7-5

SECTION 8 DEBUGGING

PART III - ADVANCED PROGRAMMING TECHNIQUES

SECTION 9 OPERATING SYSTEM FEATURES

SECTION 10 FILE SYSTEM FEATURES

SECTION 11 EXTENDED FEATURES OF SEG

THE SEG LOADMAP 11-1
EXTENDED FUNCTIONALITY OF THE LOADER

SUB-PROCESSOR 11-7
THE MODIFICATION SUB-PROCESSOR 11-17
SEG LEVEL COMMANDS 11-20

REV. 0

DR3057 TABLE OF CONTENTS

SECTION 12 SHARED CODE AND OTHER ADVANCED SEGMENTED PROGRAM TECHNIQUES

APPLICABILITY
SOURCE CODE
COMPILING
LOADING
LOADING FOR SHARED CODE
SPLITTING OUT
INCORPORATING FILES INTO SHARED SEGMENTS
COMMON BLOCKS OVER 64K WORDS LONG
EXTENSION STACK SEGMENTS

12-1
12-2
12-3
12-3
12-4
12-11
12-15
12-16
12-19

SECTION 13 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

INTRODUCTION
MULTIPLE INDEX DATA ACCESS SYSTEM (MIDAS)
DATABASE MANAGEMENT SYSTEM (DBMS)
FORMS MANAGEMENT SYSTEM (FORMS)
OTHER LANGUAGES

13-1
13-1
13-9
13-9
13-10

SECTION 14 OPTIMIZATION AND OTHER HELPFUL HINTS

PART IV - FORTRAN LANGUAGE REFERENCE

SECTION 15 FORTRAN LANGUAGE ELEMENTS

LEGAL CHARACTER SET
LINE FORMAT
OPERANDS
OPERATORS
PROGRAM COMPOSITION

15-1
15-1
15-3
15-7
15-9

SECTION 16 FORTRAN STATEMENTS

IMPLEMENTED STATEMENTS
HEADER STATEMENTS FOR SUBPROGRAMS
SPECIFICATION STATEMENTS
STORAGE STATEMENTS
EXTERNAL PROCEDURE STATEMENTS
DATA DEFINITION STATEMENTS
COMPILATION AND RUN-TIME CONTROL STATEMENTS
ASSIGNMENT STATEMENTS
CONTROL STATEMENTS
INPUT/OUTPUT STATEMENTS
CODING STATEMENTS
FORMAT STATEMENTS
DEVICE CONTROL STATEMENTS
SUBROUTINE CALLS

16-1
16-4
16-5
16-7
16-9
16-9
16-10
16-11
16-12
16-16
16-20
16-21
16-30
16-31

November 1977

PDR3057

SECTION 17 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

FUNCTIONS
SUBROUTINES

17-1
17-3

PART V - UTILITY REFERENCE

SECTION 18 COMPILER REFERENCE

PRIME FORTRAN COMPILER PARAMETERS
EXPLICIT SETTING OF THE A AND B REGISTERS

18-1
18-8

SECTION 19 SEG COMMAND REFERENCE

INTRODUCTION
SEG COMMANDS

19-1
19-2

SECTION 20 LIBRARIES REFERENCE

FORTRAN FUNCTION LIBRARY
Mixing Long and Short Integers
FORTRAN Functions

FORTRAN MATRIX (MATH) LIBRARY
SORT AND SEARCH LIBRARY
APPLICATIONS LIBRARY
OPERATING SYSTEM LIBRARY

20-1
20-1
20-2
20-10
20-18
20-22
20-39

APPENDIX A ERROR MESSAGES

INTRODUCTION
COMPILER ERROR MESSAGES
LINKING LOADER ERROR MESSAGES
SEG LOADER ERROR MESSAGES
RUN-TIME ERROR MESSAGES

A-l
A-2
A-5
A-8
A-ll

APPENDIX B SYSTEM DEFAULTS AND CONSTANTS

SYSTEM DEFAULTS AND CONSTANTS B-l

APPENDIX C ASCII CHARACTER SET

ASCII CHARACTER SET INON-PRINTING)
ASCII CHARACTER SET ^PRINTING)

C-2
C-4

INDEX X-l

REV. 0

PDR3057 ILLUSTRATIONS AND TABLES

ILLUSTRATIONS AND TABLES

ILLUSTRATIONS

1-1 Sequence of FORTRAN Program Development 1-3
1-2 FORTRAN Mathematical Functions 1-15
1-3 Matrix Operations Subroutines 1-16
5-1 *PBRK Locations Before and After Loading

An Object Module 5-3
11-1 Full SEG Loadmap (MAP 7) 11-3
13-1 User 's Functional Overview of the MIDAS

Fi le System 13-3
13-2 Sample of CREATK Dialogue 13-5
13-3 Example of Data Maintenance Program 13-8
15-1 Program Line Format 15-2
15-2 Source Program Composition 15-10
18-1 Bit-Mnemonic Correspondence 18-12

TABLES

4-1 Compiler Parameter Mnemonics 4-5
4-2 Concordance Codes 4-13
5-1 Load State Definition 5-9
16-1 Data Mode Rules for Assignment Statements 16-13
16-2 Devices and the i r FORTRAN Unit Numbers 16-17
16-3 Results of Formats in Output Statements 16-22
16-4 Results of Formats in Input Statements 16-24
16-5 Examples of B Format Usage 16-29
18-1 Compiler F i le Specifications 18-2
18-2 A- and B-register Bit Correspondences of

Parameter Mnemonics 18-10
18-3 Bit/Device Correspondences 18-11
A-l Compiler Error Messages A-2
A-2 Linking Loader Error Messages A-5
A-3 SEG Loader Error Messages A-8
A-4 Run-time Error Messages A-ll
C-l ASCII Character Set (Non-printing) C-2
C-2 ASCII Character Set (Printing) C-4

November 1977

P A R T I

O V E R V I E W

PDR3057 OVERVIEW

SECTION 1

OVERVIEW

INTRODUCTION

This document is a comprehensive guide for the Prime FORTRAN programmer.
It contains everything normally necessary for writing, compiling, load­
ing, and executing FORTRAN programs. The user is assumed to be familiar
with the FORTRAN language but not with its implementation and use on a
Prime computer. Users unfamiliar with the language should read one of
the commercially available instruction books; two examples are:

McCracken, Daniel D., A. Guide to FORTRAN IV Programming,
John Wiley and Sons, inc.

Organick, Elliott I., A FORTRAN IV Primer, Addison-Wesley
Publishing Company.

The current definitive standard for the FORTRAN IV language is the
American National Standards Institute publication X3.9-1966 (USA
Standard FORTRAN).

This Version

This is a Preliminary Documentation Release, documenting Prime FORTRAN IV
and supporting utilities at software revision level 14 (Rev. 14). It
is more complete than the previous documentation on the use of FORTRAN
under PRIMOS (Prime Computer Operating System) and replaces the following
documents:

FORTRAN IV USER GUIDE, MAN1674
Rev. 10 VFTN, PTU24
Rev. 11 FTN for PRIMOS II, III, IV, PTU26
FTN (Rev. 13), PTU35
PROGRAM DEVELOPMENT SOFTWARE USER GUIDE, MAN1879

(Sections 5, 7, and 9)
PDS UPDATES (Rev. 13) , PTU33

This document is not yet in its final form. Certain sections, less
central to the major purposes of this guide, have not been included;
they are represented here by a detailed outline with references to
existing documentation from which the desired information may be
extracted. These sections will be included in the Final Documentation
Release which will be a typeset manual.

1 - 1 November 1977

SECTION 1 PDR3057

Organization

The guide is composed of five major parts:

Part 1. An introductory section including an overview of FORTRAN as it
is implemented on the Prime Computer. This includes Prime
extensions to the language, supporting utilities, systems,
and software, plus where to find information in this document.
(Section 1) .

Part 2. Using the Prime computer for FORTRAN programming. This is a
tutorial, arranged to follow the normal sequence of program
development. A single pass through this part will enable the
user to perform all the usual FORTRAN programming functions.
The order of information presented is (see Figure 1-1) :

accessing the system (Section 2)
creating a program (Section 3)
compiling (Section 4)
loading for relative address code (Section 5)

or segmented-address code (Section 6)
executing (Section 7)

A final section covers debugging concepts and the use of debugging tools
available to the FORTRAN programmer (Section 8).

System utilities are introduced and all concepts and PRIMOS-level commands
necessary for the large majority of uses are discussed with examples. A
user wishing to go beyond these for special programming concepts, more
efficient program creation, program optimization, etc., will find
references to the information (either in this document or another reference
document) at the appropriate place. In most cases, it is unnecessary to
use any document other than this one.

Part 3. Advanced Techniques. Sections 9-14 cover a range of special­
ized topics including program optimization with the segmented
loader, loading for shared procedure, introduction to the
MIDAS, DBMS, and FORMS systems in the FORTRAN environment,
and additional details on extended use of the operating
system and file management system.

Part 4. FORTRAN language reference. Sections 15-17 form a reference
for the FORTRAN language as implemented on Prime computers.
The Prime extensions to the standard language are given along
with examples of their usage.

Part 5. Utility Reference. Provides more detailed and extended infor­
mation about the use of the utilities supporting FORTRAN. In
addition, libraries are listed and the library functions and
subroutines which are particularly useful are described in
detail. The user is told of the existence and functionality
of less useful, lower level subroutines and where to find
complete information about them.

REV. 0

PDR3057 OVERVIEW

FORTRAN
SOURCE

PROGRAM

I
FTN

FORTRAN
COMPILER

R - IDENTITY COMPILER
OPTION

OBJECT L 3 2 R 0 R 6 4 R

FILE

X

LISTINGS AND
CONCORDANCES

COMPILER V - IDENTITY
OPTION

64V . I OBJECT

LOAD
LOADER

SAVED
MEMORY

IMAGE FILE

SEGMENTED
RUNFILE

EXECUTE ON
PIOO, P200, P300,
P400,P500

P^-re

EXECUTE ON
P400, P500

(>^9

Figure 1-1. Sequence of FORTRAN Program Development

1 - 3 November 1977

SECTION 1 PDR3057

A complete list of compiler, loader , and run-time error
messages and their meanings (Appendix A) and system defaults
and constants (Appendix B) and ASCII character set (Appendix C)
are included.

Related Documents

The following documents contain detailed reference information on the
PRIMOS system and utilities.

Operating System Reference

PRIMOS INTERACTIVE USER GUIDE, MAN2602
updated by PTU31 and PTU42

REFERENCE GUIDE, FILE MANAGEMENT SYSTEM (EMS) , PDR3110

REFERENCE GUIDE, SOFTWARE LIBRARY, PDR3106

Software Subsystem Reference

THE NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR3104

REFERENCE GUIDE, MULTIPLE INDEX DATA ACCESS SYSTEM (MIDAS), PDR3061

REFERENCE GUIDE FOR DBMS SCHEMA DDL, IDR3044

FORTRAN REFERENCE GUIDE FOR DBMS, IDR3045

FORMS MANAGEMENT SYSTEM (FORMS), IDR3040
Updated by PTU45

REV. 0 1 - 4

PDR3057 OVERVIEW

CONVENTIONS AND DEFINITIONS

Terminal Functions

(CR) or CR Carriage return

" Character erase; deletes preceeding character.

? Line kill; deletes all characters in current line. .

txxx Escape Kay for entry of non-printing character^ with

ASCII code>xxx? CL* ^ t x ^ 7 -fcr- C-T&L'b o r- £e/(cx>Je..

Typographic Conventions

[] Brackets enclose optional item(s).

{ } Braces enclose a number of items, one of which must be
selected.

ALLCAPS A literal item that is to be entered exactly as shown.
Acceptible abbreviations are underlined (see below).

lower-case A parameter whose legal value is to be selected by the
user.

Underlining. There are three major uses;

• Indicate acceptable abbreviations in a command line, e.g.,

ASSIGN device -WAIT

is equivalent to

AS device -WAIT

• Indicate user input in an interactive session, e.g.,

OK, SEG
GO
VLOAD #BENCH

etc.

• Emphasize command line parameters being described in text
following command lines, e.g.,

SPOOL filename [-option-1] [-option-2]...

places a file in the queue to be printed by the line printer.

filename is the file to be placed in the line printer spool
queue; option-1 (etc.)

November 1977

SECTION 1 PDR3057

CR or (CR) A carriage return; terminates an input line at the user
terminal.

2048 A decimal number.

'4000 An octal number. The second form is that used in FORTRAN
or programs.

:4000

K 1024 (decimal); '2000 (octal).

Example: 64K words of memory is

64x1024 = 65536 words (decimal)

or

'lOOx'2000 = '200000 words (octal)

Filename conventions

filename Source file

EH-filename Binary (object) file; compiler convention

L-<-filename Listing file; compiler convention

IVB-filename Map file

* filename Saved executable memory image (R-identity)

#filename Saved executable segmented runfile (V-identity)

Filenames may be up to 32 characters long (6 characters on old file
partitions). u_ I f \

0^ Sena vvJpJ (U\f:os< <«- r^^i / ° ^ ** ^ r ^ r e L) ,
Basic Concepts «*l

file An organized collection of information stored on a disk
(or a peripheral storage medium such as tape) . Each file
has an identifying label called a filename.

UFD A User File Directory. A special type of file containing
a list of filenames and the location of the corresponding
files. A file whose name is on this list is said to be
in this directory.

MFD The Master File Directory. A special UFD which contains
the names of the UFDs on a particular disk. There is one
MFD for each logical disk.

REV. 0

PDR3057 OVERVIEW

sub-UFD A user file directory which is in a UFD or another
sub-UFD.

Note

File directories with names in the MFD are UFDs; all
other file directories are sub-UFDs.

logical disk A division of the ccmputer's disk memory. It may be all
or part of a physical disk. The logical disk is labeled
by an octal number called the logical disk number.

volume name

treename

A literal name corresponding to a logical disk, e.g.,
logical disk 4 may have volume name DOCUMN.

An extended form of the filename which completely
describes the location of a file in the directory
structure. Treenames may be one of the following forms:

filename

uf d-name [password] >... >sub-uf d-name [password] >f ilename

<volume-name>ufd-name [password]>...sub-ufd-name [password]>filename

<logical-disk>ufd-name [password] > sub-ufd-name [password] >f ilename

filename

ufd-name
sub-ufd-name

password

volume-name

}

is the name of the file.

is the name of the UFD or sub-UFD in which the file
(or sub-UFD) to right of it on the line is located.

is the password of the UFD or sub-UFD, if it has been
protected with a password.

is the literal name of the disk on which the file is
located; if volume name is specified as <*>, this is
the same as using the name of the disk the user is on.

logical-disk is the (octal) number of the logical disk.

source f {Lie

file)

The program file created by the user consisting of text,
program statements, comments, etc.

binary file 1 A translation of the source file generated by the FORTRAN
object file J compiler. Such files are in the format required as

input to the linking loader or segmented loader.

runfile The executable version of a program consisting of the
binary file, subroutines and library entries used by
the program, COMMON areas, initial settings, etc. This
file is created using LOAD or SSG.

1 - 7 November 1977

SECTION 1 PDR3057

mode An addressing scheme. The mode used determines the
construction of the computer instructions by the compiler.
Modes available to the FORTRAN programmer are relative-
addressed (32R or 64R) and segmented-addressed (64V) .
(The number is the user memory size in K's of 16-bit
words.)

identity The addressing mode plus its associated repetoire of
computer instructions. Programs compiled in 32R or 64R
mode execute in the R-identity; programs compiled in 64V
mode execute in the V-identity.

byte 8 bits; 1 ASCII character.

word 16 bits; 2 bytes; 2 ASCII characters

FORTRAN FEATURE SUMMARY

Material for this sub-section is described in detail in the Language
Reference Section of this document (Sections 15-17) . A summary will be
included here in the final version. Extensions to standard FORTRAN which
the user should inspect are:

• Use of the $INSERT command for file insertion at compilation

• B Format

• TRACE command for debugging

• List-directed input/output

• Long integers

• Parameters

• IMPLICIT specification

• Subprogram structure

FORTRAN UNDER PRIMOS

Program Conversion

There are a number of factors which must be taken into account when
converting FORTRAN programs from one computer system to another. These
are the language statements, input/output, functions, subroutines, and
control flow. Any particular program may have special conversion needs
but these are the major areas to consider.

Language: Make certain that all statements perform the same operations
on both systems. The major sources of possible incompatibility are
device and input/output statements. The 1966 standard FORTRAN does not

REV. 0 1 - 8

PDR3057 OVERVIEW

fully describe certain statements such as ENDFILE or REWIND;
consequently, their exact performance is installation dependent.
Extensions to the standard READ and WRITE statements are not uniform
throughout the industry; these extensions must be changed to Prime's
usage or the appropriate Prime subroutines inserted. Levels of
nesting in DO loops and IF statements will present no problems as
there is no syntactical limit on such nesting in Prime FORTRAN.
Similarly, there is no syntactical limit to the number of statement
labels in computed GO TO statements.

Input/Output; FORTRAN logical unit numbers must agree with those given
in Section 16 of this document (or such others as are established by
the system manager) . As PRIMOS is an interactive multi-user system
there is no need for a job control language, all users have access to
disk files. Use of peripheral storage devices is obtained by assigning
the device to the user (see Section 3) after which file operations may
be performed.

Functions; Prime supplies a large number of the normal mathematical
functions plus a set oir^Logicai functions. These are listed in Section
20. The user should check these to be sure all functions in the
original source program are implemented under PRIMOS. It is unlikely
that the average programmer will be using functions not on this list.
User-defined functions should be written as specified in Section 17.

Subroutines: Inasmuch as all operating system or file system calls are
installation-dependent, all such calls must be replaced by their PRIMOS
equivalents. Subroutines for all normal usages will be found in Section
20, especially in the Applications Library, which is given here in its
entirety. Subroutines for extended usage or special cases will be
found in REFERENCE GUIDE, SOFTWARE LIBRARY, PDR3106. User-defined sub­
routines should be written to the specifications in Section 17.

Control Flow: To insure an orderly return from the main program to the
PRIMOS level the last logical statement of a main program must be

CALL EXIT

This is analogous to the RETURN statement which is the last logical
statement of a function subprogram or subroutine.

Programs executing in the R-identity may be "chained" by use of the RESU$$
subroutine described in Section 20, Operating System Library.

Program Environments

Under PRIMOS, FORTRAN programs may execute in one of three environments:

• Interactive

• Phantom user

• Sequential job processing

1 - 9 November 1977

SECTION 1 PDR3057

Interactive: Program execution is initiated directly by the user
(Section 7) . The program runs in real time and is "connected" to
the terminal. The program will accept input from the terminal and will
print at the terminal any output specified by the program as well as
user- or system-generated error messages. This environment is the one
most often used. Major uses are:

• Program development

• Programs requiring short execution time

• Data entry programs such as order entry, payroll, etc.

• Interactive programs such as the Editor, etc.

Phantom User: The phantom environment (Section 9) allows programs to be
executed while "disconnected" from a terminal. This frees the terminal
for other uses. Phantcm users accept input from a ccrrmand file instead
of a terminal; output directed to a terminal is either ignored or
directed to a file.

Users may interrupt a program running as a phantom. Major uses of
phantoms are:

• Programs requiring long execution time (such as sorts)

• Certain system utilities (such as line printer spooler)

• Freeing terminals for interactive uses

Sequential Job Processing:

The number of phantom users on a system is fixed. Sequential job
processing queues requests for phantom users and then executes these jobs

.boccmo available- (Section 9)-£

This environment is especially useful when phantcm usage is heavy and
real time execution of programs is not a requirement.

REV. 0 1 - 1 0

PDR3057 OVERVIEW

PRIMPS Command Summary

There are in excess of one hundred commands which may be given to the
operating system (PRIMOS-level commands). Commands which are of use to
the FORTRAN applications programmer are listed below with a brief
explanation of their function. Most of these commands are discussed in
this document. Consult the index under the command name to locate
where the command is discussed. Commands not discussed in this
document are treated in detail in PRIMOS INTERACTIVE USER GUIDE,
MAN 2602 (with its updates PTU31 and PTU42).

Certain PRIMOS commands are not listed here because they are specific
to other high-level languages, assume a knowledge of assembly language,
are network commands, or are operator commands. They will not be of
use to the FORTRAN applications programmer. They are discussed in
detail in the PRIMOS interactive documentation.

Command Function

ASSIGN
ATTACH
AVAIL
BINARY
CLOSE
CMPRES
CNAME~
COMINPUT
COMOUTPUT
CPMPC
CPPMPC
CREATE
CRMPC
CRSER
CX
DATE
DELETE
ED
EXPAND
FILMEM
FILVER
FTN
FUTIL
HILOAD
INPUT
LISTF
LISTING
LOAD
LOGIN
LOGOUT
MAGNET
MAGRST
MAGSAV
MDL

Obtains exclusive control of a peripheral device
Attaches to UFD or sub-UFD
Gives records available on specified disk
Opens a file for writing on PRIMOS unit 3
Closes named files or file units as specified
Compresses ASCII file
Changes a filename
Switches command stream from terminal to file and vice-versa
Switches terminal output to file and vice-versa
Punch cards on parallel interface card punch
Punch cards and print text on parallel interface card punch
Creates a sub-UFD in the current UFD
Reads cards from the parallel interface card reader
Reads cards from the serial interface card reader
Invokes the sequential phantom job execution utility
Prints system time and date at terminal
Deletes a filename from the UFD
Invokes Prime's text editor
Expands a file previous compressed with CMPRES
Fills the user memory space with zeroes
Compares two binary files and prints differences
Invokes FORTRAN compiler
Invokes Prime's file manipulation utility
Same as LOAD, but restores the loader higher in memory
Opens file for reading on PRIMOS unit 1
Prints list of entries in current UFD
Open a file for writing on PRIMOS unit 2
Invokes the Linking Loader (R-identity)
Logs the user in to the system
Logs the user off the system
Invokes the magtape/disk tranfer/translation utility
Transfers files from 9-track tape to disk
Transfers files from disk to 9-track tape
Punches paper tape of memory image in self-loading format

1 - 1 1 November 1977

SECTION 1 PDR3057

MESSAGE
OPEN
PASSWD
PHANTOM
PRMPC
PROTECT
PRSER
PRVER
PTCPY
PUSS
RESUME
SEG
SHARE
SIZE
SLIST
SORT
SPOOL
START
STATUS
TIME
UNASSIGN
UPCASE
USERS

/*

Transmits message from user terminal to system console
Opens a file on a specified PRIMOS unit
Sets passwords for current UFD
Initiates job execution released from user terminal
Print on parallel interface driven line printer
Sets owner/non-owner rights for files and sub-UFDs
Print on serial interface driven line printer
Prints a file on the Versatec(TM) printer/plotter
Duplicates and verifies paper tapes
Compares two ASCII files
Restores a file to user's memory and begins execution
Invokes the segmented-address (V-identity) utility
Incorporates files into shared segments
Gives size of file in records
Prints contents of file to user's terminal
Sorts an ASCII file
Spools output files to line printer
Sets registers and keys and begins program execution
Prints status of specified system parameters
Prints connect, compute, and disk I/O time at terminal
Relinquishes control of a peripheral device
Reformats files by changing lower-case letters to upper-case
Prints number of users currently logged in
Comment line for command files

File System Summary

PRIMOS allows the user to access up to 16 (15 under PRIMOS II) files at
one time. These disk files may be created, modified and deleted
through the use of the Applications Library subroutines (Section 20)
and the file management subroutines of the Operating System
(Section 20). The file system is discussed in Section 10. Files,
opened by these subroutines, may be accessed by FORTRAN I/O statements
such as READ, WRITE, ENCODE, DECODE. See Section 16 for a complete
discussion of these commands.

REV. 0 1 - 1 2

PDR3057 OVERVIEW

SYSTEM RESOURCES SUPPORTING FORTRAN

There are a large number of libraries and utilities in PRIMOS supporting
the use of FORTRAN on the Prime computer. A brief description of seme
of the major ones follows.

Libraries

Library functions and subroutines of use to the FORTRAN applications
programmer are in Section 20 of this document. A complete treatment
of all library and system subroutines is in REFERENCE GUIDE, SOFTWARE
LIBRARY, PDR3106.

A summary of the FORTRAN mathematical functions is given in Figure 1-2.
There are also FORTRAN functions for thec$.ogica]) operations of AND, OR,
XOR, NOT, right shift, right truncate, left shift, and left truncate.
Conversion between data modes is supported by a set of conversion
functions. For more advanced mathemetical usage, a matrix library is
provided (see Figure 1-3 for a summary). Complete descriptions of the
In-memory Sort Library and the Applications Library are in Section 20.
Finally, the operating system subroutines and their functions are listed.
Those which will be of use at the applications level are described in
detail.

Compiler

Prime's FORTRAN IV compiler operates on FORTRAN source code to generate
highly optimized object code. The user has the option, at compilation
time, of generating object code for execution in either the R-Identity or
V-identity. Additional options control I/O specifications, listings,
concordances, memory usage, and other useful operations. The compiler
is described in Section 4 with a detailed reference in Section 18.

Linking Loader

The R-identity loader combines into an executable program, program
modules, subroutines, and libraries that have been compiled separately.
It handles symbol cross references and module linkages. Maps of the
load are available at the terminal or written into files. The Linking
Loader is described in Section 5.

SEG Utility

SEG is the V-identity program loading and execution utility. It
combines separately compiled program modules, subroutines, and libraries
into an executable program. Program lengths can be up to 960K or 1984K
words (depending upon the version of SEG installed) . All memory manage­
ment, symbol tables, linkages, etc. are handled by SEG's loader. Various
types of loadmaps may be obtained. The SEG utility has many functions,
they are described as follows:

Normal usage (Section 6)
Extended usage (Section 11)
Using SEG for loading shared procedure (Section 12)
Reference (Section 19)

1 - 1 3 November 1977

SECTION 1 PDR3057

Editor

Prime's text editor is a line--oriented editor enabling the programmer
to enter and modify source code and text files. Information for these
purposes is in Section 3; a complete description of the Editor is in
THE NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR3104.

Multiple Index Data Access System (MIDAS)

MIDAS is a system of utilities and subroutines for creating and
maintaining keyed-index/direct-access files. All housekeeping functions
on the index and data sub-files are performed by MIDAS subroutines called
from FORTRAN programs. An overview of MIDAS is in Section 13, the
complete documentation is REFERENCE GUIDE, MULTIPLE INDEX DATA ACCESS
SYSTEM (MIDAS), PDR3061.

Database Management System (DBMS)

Prime's DBMS is a CODASYL-compliant system for management of large
amounts of data. DBMS can be accessed from either FORTRAN or COBOL
programs. Complete information on using DBMS in the FORTRAN environ­
ment is in REFERENCE GUIDE FOR DBMS SCHEMA DDL, IDR3044 and FORTRAN
REFERENCE GUIDE FOR DBMS, IDR3045.

Forms Management System (FORMS)

FORMS is a system for creation, maintenance, and use of screen forms
for interactive file maintenance. These screen forms are an extremely .
useful tool for the JPOBOJifigiM applications programmer writing -iiie-^^L^J^
maintonaruJM • JJIMJI ams. Details are in FORMS MANAGEMENT SYSTEM (FORMSp,
IDR3040 and its update PTU45.

Language Interfaces

Under the PRIMOS operating system FORTRAN programs may call or be called
by PMA (Prime Macro Assembly) language programs. FORTRAN subroutines
may be called from COBOL programs. Details are in THE PMA PROGRAMMER'S
GUIDE, PDR3059 and THE COBOL PROGRAMMER'S GUIDE, PDR3056.

SAMPLE PROGRAM DEVELOPMENT

This sub-section will be included in the final version. It will serve
as an annotated map to this document.

It is not intended to teach the programmer the use of the system but to
provide a framework on which to hang more detailed information presented
later in the manual.

REV. 0 1 - 1 4

PDR3057 OVERVIEW

Operation

Data Mode of Argument and Value
Single- Double-

Integer Precision Precision Complex

Sine
Cosine
Arctangent
Arctangent of ratio
Hyperbolic tangent

Log-base e (Ln)
Log-base 2
Log-base 10
Exponential

Square root
Absolute value
Remainder (modulus)
Truncation to Integral
value

Positive difference
Magnitude of first number

times sign of second
Complex conjugate

Random number

Maximum of List

Minimum of List

n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a

n/a
IABS
MOD
n/a

IDIM
ISIGN

n/a

IRND(l)

AMAX0(2)
MAXO
AMINO (2)
MINO

SIN
COS
ATAN
ATAN2
TANH

ALOG

ALOG10
EXP

SQRT
ABS
AMOD
AINT

DIM
SIGN

n/a

RND

AMAXl
MAX1(3)
AMIN1
MINI (3)

DSIN
DCOS
DATAN
DATAN2

DLOG
DLOG2
DLOG10
DEXP

DSQRT
DABS
DMOD
DINT

DSIGN

n/a

DMAX1

DMEN1

CSIN
CCOS

CLOG

CEXP

CSQRT
CABS
n/a
n/a

n/a
n/a

CONJG

n/a

n/a
n/a
n/a
n/a

Notes

n/a - Not applicable.

1 - Accepts short integer argument only; all other integer

functions accept combinations of short and long integers,

2 - Value mode is single-precision.

3 - Value mode is integer.

Figure 1-2. FORTRAN Mathematical Functions

1 - 1 5 November 1977

Operation

Data Mode of Matrix Elements
Single- Double-

Integer Precision Complex Precision

Setting matrix to identity matrix

Setting matrix to constant matrix

Multiplying matrix by a scalar

Addition of matrices

Subtraction of matrices

Matrix Multiplication

Calculating transpose matrix

Calculating adjoint matrix

Calculating inverted matrix

Calculating signed cofactor

Calculating determinant

Solve a system of linear
questions

Generate permutations

Generate combinations

IMIDN

IMCON

IMSCL

IMADD

IMSUB

IMMLT

IMTRN

IMADJ

n/a

IMCOF

IMDET

n/a

PERM

COMB

MIDN

MCON

MSCL

MADD

MSUB

MMLT

MTRN

MADJ

MINV

MCOF

MDET

LINEQ

CMIDN

CMCON

CMSCL

CMADD

CMSUB

CMMLT

CMTRN

CMADJ

CMINV

CMCOF

CMDET

CLINEQ

DMIDN

DMCON

DMSCL

DMADD

DMSUB

DMMLT

DMTRN

DMADJ

DMINV

DMCOF

DMDET

DLINEQ

Notes

n/a - Not applicable

* - For square matrices only

Figure 1-3. Matrix Operations Subroutines

1 - 1 6

r

P A R T II

U S I N G F O R T R A N U N D E R P R I M O S

PDR3057 ACCESSING PRIMOS

SECTION 2

ACCESSING PRIMOS

The following information will be discussed in the final version of this
document. For detailed information, refer to: PRIMOS INTERACTIVE USER
GUIDE, REVISION A, MAN2602.

PRELIMINARY ELEMENTS

Character Set:
Legal characters
Control characters
Reserved characters

Terminal:
Operation
Special keys

USER FILE DIRECTORY OPERATIONS

Directory Structure (MFD, UFDs, sub-UFDs, treenames)
PRIMOS command format
Logging in - The LOGIN command
Creating and deleting UFDs
Passwords for directories
Directory Contents - The LISTF command
Logging out - The LOGOUT command

PRIMOS COMMANDS FOR THE FORTRAN PROGRAMMER

Alphabetical summary

2 - 1 November 1977

PDR3057 ENTERING SOURCE PROGRAM

SECTION 3

ENTERING AND MANIPULATING SOURCE PROGRAMS

ENTRY FROM OTHER MEDIA

Existing source programs resident on punched cards, magnetic tape, or
punched paper tape can easily be read into disk files using PRIMOS-level
utilities. In addition, the punched card and magnetic tape transfer
utilities will translate from BCD or EBCDIC representation into ASCII
representation saving considerable time and effort.

Subroutines and other installation-dependent operations may be altered
to conform to PRIMOS using the Editor (described later in this section).

The general order of operations for input from a peripheral device is:

1. Obtain exclusive use of the device (Assigning)

2. Transfer programs with appropriate utility

3. Relinquish exclusive use of the device (Unassigning)

Assigning A Device

Assigning a device gives the user exclusive control over that peripheral
device. The PRIMOS-level ASSIGN command is given from the terminal:

ASSIGN device [-WAIT]

device is a mnemonic for the appropriate peripheral:

CR Card Reader
MTn Magnetic Tape Unit n.
PTR Paper Tape Reader

-WAIT is an optional parameter. If included, it queues the ASSIGN
command if the device is already in use. The assignment request remains
in the queue until the device becomes available or the user types the
CTRL/P or BREAK key at the terminal; both occurrences return the user
to PRIMOS. If the requested device is not available and the -WAIT
parameter has not been included, the error message:

DEVICE IN USE

will be printed at the terminal.

3 - 1 November 1977

SECTION 3 PDR3057

After all I/O operations are completed, exclusive use is relinquished by
the command:

tJNASSIGN device

device is the same mnemonic used in the ASSIGN command.

Reading Punched Cards

Assign use of the parallel interface card reader by:

AS CR -WAIT

To read cards from the card reader, load the card deck into the device
and enter the command:

CRMPC treename

where:

treename is the name of the file into which the card images are to be
loaded.

Source deck header control cards are set up as follows:

Source deck Columns 1 and 2 of
representation deck header card

BCD $6
EBCDIC $9
ASCII no header card

Reading continues until a card with $E in columns 1 and 2 are encountered
(end of deck) ; control returns to PRIM3S and the file is closed. If the
cards are exhausted (or the reader is halted by the user) , control returns
to PRIMDS but the file is not closed. If more cards are to be read into
the file, the reader should be reloaded; reading is resumed by the command:

S

at the terminal.

The command:

C ATX

o r

C f T W » | I Hill1'

w i l l close the f i l e .

REV. 0

PDR3057 ENTERING SOURCE PROGRAMS

Example of card reading session:

OK, AS CR -WAIT
OK, CRMPC old-program-1
OK, UN CR
OK,

If a serial interface card reader is used, the process is similar with
slightly different reader corrmands.

OK, AS CARDR -WAIT
OK, CRSER old-program-2
OK, UN CARDR
OK,

CARDR may be abbreviated to CAR.

Reading Magnetic Tape

Assign use of the magnetic tape drive by:

AS MTx -WAIT

where x i s t h e t a p e d r i v e u n i t number: 0 , 1 , 2 , o r 3 .

Mount t h e t a p e on t h e s e l e c t e d d r i v e u n i t and r e a d t h e t a p e w i t h PRIMOS'
MAGNET u t i l i t y :

OK, MAGNET
GO

MAGNET 14.0 19-MAY-77

OPTION: READ

MTU# = uni t -number [/ t r a cks]

where:

unit-number is the number of the magnetic tape drive unit which
was previously assigned and

tracks is either 7 or 9; if this parameter is omitted,
9-track tape is assumed.

MAGNET then asks a series of questions about the tape format:

MTFTLE# = tape-file-number

tape-file-number is the file number on the tape. A positive
integer causes the tape to be rewound and then
positioned to the file number; a 0 causes no
repositioning of the tape.

3 - 3 November 1977

SECTION 3 PDR3057

LOGICAL RECORD SIZE = 80

This is the number of bytes/line image; normally this is 80 for
a FORTRAN source program.

BLOCKING FACTOR = blocking-factor

blocking-factor is the number of logical records per tape
record.

ASCII, BCD, BINARY, OR EBCDIC? data-representation

data-representation action

ASCII transfer with bit unpaotkjng

BCD translation to ASCII from 7-track

BINARY transfer /ê -bed-i/v̂
EBCDIC trnnolati.on- to ASCII with bit wwpewfcaaag

-f-r-CL.v'S^T-'

FULL OR PARTIAL RECORD TRANSLATION? answer

answer is FULL or PARTIAL. The question is asked only for BCD or
EBCDIC representations. Partial translation allows specified bytes
in the record to be transferred to disk without translation to
ASCII. The partial option is useful when transferring data files,
but almost all source programs will be transferred with the full
option.

OUTPUT FILENAME: filename

filename is the name of the file in the UFD into which the
magnetic tape is to read. If the filename already
exists in the UFD, the question:

OK TO DELETE OLD <filename>? answer

will be asked. A NO will cause the request for an output file­
name to be repeated. A YES will cause the transfer to begin;
upon completion, the following message will be printed out:

DONE, <tape-records> RECORDS READ, <disk-records> DISK RECORDS OUTPuT
OK,

Use of the tape drive unit should then be relinquished by

UN MTx

REV. 0 3 - 4

PDR3057 ENTERING SOURCE PROGRAMS

Reading Punched Paper Tape

Source programs punched on paper tape in ASCII representation can be
read into a disk file with the Editor utility. F i~^ load fio^-f- T<MP«-

OK, AS PTR -WAIT assign tape reader
OK, ED invoke Editor
GO
INPUT
(CR) . switch to EDIT mode
EDIT
INPUT (PTR) input from tape reader J fo^e i S be TÂ s r&aj^
editor message
FILE filename file input under filename
OK, UN PTR unassign tape reader.

ENTERING AND MODIFYING PROGRAMS - THE EDITOR

Programs are normally entered into the computer using Prime's Text Editor
(ED) . This editor is a line-oriented text processor whose line pointer is
always located at the last line processed (whether the processing is print­
ing, locating, moving pointer, etc). The Editor operates in two modes,
INPUT and EDIT.

Using the Editor

When creating a new file, the Editor is invoked by

ED

which places the Editor in the INPUT mode. When modifying an existing
filename, the Editor is invoked by

ED filename

which places the Editor in the EDIT mode.

A RETURN with no preceding characters on that line switches the Editor
from one mode to another.

Input Mode

The INPUT mode is used when entering text information into a file (e.g.,
creating a program). The word INPUT is displayed at the user's terminal
to indicate the Editor has entered that mode. The RETURN key terminates
the current line and prepares the Editor to receive a new line. Tabula­
tion is done with the backslash (\) character. Each backslash represents
the first, second, etc. tab setting; the default tabs are at columns 6,

3 - 5 November 1977

SECTION 3 PDR3057

15, and 30. These settings may be overridden and up to 8 tab settings
may be specified by the user with the TABSET command (descriJDed later)
A RETURN with no text preceding it puts the Editor into EDIT mode.

Edit Mode

The EDIT mode is used when the contents of the file are to be modified.
More than 50 commands are available, although users will find that a
small subset of these will suffice for most purposes. The commands are
listed and described later in this section.

In EDIT mode, the Editor maintains an internal line pointer at the current
line (the last line processed) . Commands such as TOP, BOTTOM, FIND, and
LOCATE, move this pointer. WHERE prints out the current line number;
POINT moves the pointer to a specified line number. The MODE NUMBER
command causes the line number to be printed out whenever a line of text
is printed. All commands for location and modification begin processing
with the current line.

A RETURN without any preceding characters puts the Editor into the INPUT
mode.

Special Characters

In either mode, a single character can be erased with the erase symbol
(default is ") . For each " typed, a character is erased (from right to
left). The entire current line may be deleted by typing the kill char­
acter (default is ?) . A line followed by a ? is null, and a RETURN at
that pqint will switch the Editor into the other mode.

Do not hise the semicolon (;) character unless you are familiar with the
Editor; it has a special meaning as a control character. , t J

^ r i X V V l l ^ H ^ f ^ ^ *H*+&er>\ q ^ ^ . s e se/vuc'o/^s Sep<xr<d<?. Saving Files ^Hrpfe. CO.VKAIVA/VJS e4^re,(n v - R t ^ c u ^ /«."Xe>. ^

Orderly termination of an Editor session is done from EDIT mode. The
command:

FILE1 filename

writes the current version of the edited file to the disk under the name
filename. The specified file will be created if it did not previously
exist or overwritten if it does exist. If an existing file is being
modified, the command

FILE

writes the new version to the disk with the old filename. After exe­
cution of the filing command, control is returned to PRIMOS.

FEV. 0 3 _

PDR3057 ENTERING SOURCE PROGRAMS
Useful Techniques

The following will aid the user in adapting to Prime's Editor.

Tab Settings: When entering source code, much time can be saved using the
TABSET command. In INPUT mode, each \ character is interpreted as one
tab setting; the default values are columns 6, 15, and 30. Tabs may be
set to whatever values each programmer finds useful. Setting a tab near
column 45 makes entry of in-line f̂ rrmrjit̂ -:simple; the use of such ooMnanrte
in programs is strongly advised. c ^ £ £ ^ 5 dc^^e^s

Moving Lines of Code: Any number of lines can be moved from one location
to another using the DUNLOAD canmand. DUNLOAD deletes these lines as it
writes them into an auxiliary file. A LOAD cortmand loads the new file at
the desired point. Any number of lines can be copied from one location
in a program to another using the UNLOAD canmand. UNLOAD does not delete
these 'lines as it writes than into an auxiliary file. A LOAD canmand loads
the copy from the new file at the desired point.

Overlaying Comments After Code is Written: Comments may be easily added
to an existing source program with the OVERLAY canmand using tabs.

Finding a Line by Statement Number: The FIND command may be used to lo­
cate a statement number in a FORTRAN program.

Modifying a Line Without Changing Character Positions: The MODIFY canmand
is used when a line must be modified but thejoolaliw- column alignment must
remain the same. o.bsota.1

3 - 7 November 1977

SECTION 3 PDR3057

Sample Editing Session

See the list following this example for an explanation of the commands.

OK, ED
GO
INPUT

EDIT
TABSET 7 45

INPUT
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C
\PRINT 1, 'THIS IS A TEX"ST'\/* NOTE USE OF ERASE CHARACTER

1 ?C THIS LINE HAS BEEN DELETED

EDIT
TOP
PRINT 20
.NULL.
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C

PRINT 1, 'THIS IS A TEST* /* NOTE USE OF ERASE CHARACTER
C THIS LINE HAS BEEN DELETED
BOTTOM
FILE TEST99

OK, ED TEST99
GO
EDIT
TABSET 7 45
FIND (8) LINE
C THIS LINE HAS BEEN DELETED
DELETE
INSERT \CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMPS
INSERT \END

INPUT
P"TOP
PRINT 20
.NULL.
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C

PRINT 1, "THIS IS A TEST' /* NOTE USE OF ERASE CHARACTER
CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMOS
END

BOTTOM
FILE

OK,

REV. 0 3 - 8

file:///PRINT
file:///CALL

PDR3057 ENTERING SOURCE PROGRAMS

Editor Command Summary

The following is an alphabetic list of each Editor command and its
function. Acceptable command abbreviations are underlined. Espe­
cially useful commands are indicated with a bullet (•).
For a detailed description of all commands, see the Editor Reference
Section of THE NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR3104.

Note

The string parameter in a command is any series
of ASCII characters including leading, trailing,
or embedded blanks.

Command

• APPEND string

• BOTTOM

BRIEF

Function

Appends string to the end of the cur­
rent line.

Moves the pointer beyond the last line
of the file.

Speeds editing by suppressing the (de­
fault) verification responses to cer­
tain Editor commands.

CHANGE/string-l/string-2/4«4=i^f Replaces string-1 with string-2 for n
1J&} 1*3 lines« If G is omitted, only the first

occurrence of string-1 on each line is
changed; if G is present, all occur­
rences on n lines are changed.

• DELETE [n]

DELETE TO string

• DUNLOAD filename [n]

DUNLOAD filename TO string

ERASE character

• FILE [filename]

Deletes n lines, including the current
line (default n=l).

Deletes all lines up to but not in­
cluding line containing string.

Deletes n lines from current file and
writes them into filename. (Default
n=l.)

Same as DELETE. ..TO, but writes deleted
lines into filename.

erase character to
character.

Writes the contents of the current file
into filename and QUITs to PRIMOS.

3 - 9 November 1977

SECTION 3 PDR3057

FIND string

• FIND(n) string

GM3DIFY

'(ASR)
INPUT ((PTR)

(TTY)

• INSERT string

KILL character

LINESZ [n]

• LOAD filename

• LOCATE string

MODE COLUMN

Moves the pointer down to the first
line beginning with string.

Moves the pointer down td| first line
with string beginning in column n.

Allows the user to enter b string of
subcommands which modify Characters
within a line.

Reads text from the specified input
device: ASR (Teletype paper tape
reader) , PTR (high-speed paper tape
reader) or TTY (terminal). Default
is TTY.

Inserts string after current line.

ELJuffiuLiLiiL kill Character to
character.

Changes maximum line length.

Loads filename into text following the
current line.

Moves pointer forward to the first line
containing string, which may contain
leading and trailing blanks.

Displays column numbers whenever INPUT
mode is entered.

fpRINT |
MODE COUNT start increment width I BLANK >

I SUPPRESS I

MODE NCOLUMN

MODE NCOUNT

MODE NUMBER

MODE NNUMBER

Turns on the automatic incremented
counter.

Turns off the column displav (default) .

Suspends counter incrementing (default) .

Displays line numbers in ftont of printed
line.

Turns off the line number display
(default) .

REV. 0 3-10

PDR3057 ENTERING SOURCE PROGRAMS

MODE PRALL

MODE PRUPPER

MODE PROMPT

MODE NPROMPT

Prints lower case characters if device
has that capability.

Prints all characters as upper case.
Precedes lower case characters with an
~L and precedes upper case characters
with an ~U if the device is upper case
only.

Prints prompt characters for INPUT &
EDIT modes.

Stops printing of INPUT and EDIT prompt
characters (default) .

M0DIFY/string-l/string-2/j^^&} Superimposes string-2 onto string-1
££} 1*0 f°r H lines. If G is omitted, only

the first occurrence of string-1 on
each line is modified, otherwise all
occurrences of string-1 are modified.

STH^S OS-
Moves'" one line of text from buffer-2 MOVE buffer-1(buffer-2

• NEXT [n]

NFIND string

NFIND(n) string

• OVERLAY string

PAUSE

POINT line-number

• PRINT [n]

PSYMBOL

into buffer-1. Buffer names are STRA,
STRB, STRC, INLIN and EDLIN.

Moves the pointer n lines forward or
backward (default n=l) .

Moves pointer down to first line NOT
beginning with string.

Moves pointer down to first line in
which string does not start in column
n.

Superimposes string on current line.
Use tabs to start in middle of line.
Use .' to delete existing characters.

Returns to operating system without
changing the Editor state.

Relocates the pointer to line-number.

Prints the current line or n lines
beginning with the current line.

Prints a list of current symbol char­
acters and their function.

3 - 1 1 November 1977

SECTION 3 PDR3057

PTABSET tab-l...tab-8

QUIT

RETYPE string

SYMBOL name character

TABSET tab-l...tab-8

• TOP

• UNLOAD filename [n]

UNLOAD filename TO string

• VERIFY

WHERE

XEQ buffer

Provides for a setup of tabs on devices
that have physical tab stops.

Punches n lines on high- or low-speed
paper-tape punch.

Returns control to PRIMOS without
filing text.

The current line is replaced by string.

Changes a symbol name to character.
Current default values are:

Name

KILL
ERASE
WILD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

Default Characters

Sets up to eight logical tabstops to be
invoked by the tab symbol (\) .

Moves the pointer one line before the
first line of text.

Copies n lines into filename.

Unloads lines from current file into
filename until string is found.

Displays each line after completion of
certain commands. (Default.)

Prints the current line number.

Executes the contents of buffer.
MOVE.

See

REV. 0 3-12

PDR3057 ENTERING SOURCE PROGRAMS

[n] Repeat symbol. Causes preceding command
to be repeated n times as in:

F /^fr7*±0

which deletes the next ten lines begin­
ning with / . If n is omitted, the
command repeats until the bottom of
file is reached.

LISTING PROGRAMS

Terminal Listing

Programs may be listed at the terminal by the PRIMOS command:

SLIST treename

where treename is the name of the file to be listed. Upon completion of
the listing control is returned to PRIMOS.

Line Printer Listing

To obtain a copy of a source file on the system line printer, enter the
command:

SPOOL filename [-option-1...-option-n]

which creates a copy of the user's file filename in the line printer
spool queue. The options are mnemonics specifying printer options. The
most useful options for the FORTRAN programmers are:

-FTN Causes the FORTRAN output conventions to control the
line printer when printing a file. These control
characters are discussed in Section 16 under Format­
ted Printer Control.

-LNUM Prefixes a line number to the left of the file contents;
these numbers are enclosed in parentheses.

\ f
-DEFER time Defers printing of the file until the specified time.

The time may be entered in 24-hour format (13:05) or
12-hour format (9:25 PM) .

The -FTN and -LNUM options are incompatible.

3-13 November 1977

SECTION 3 PDR3057

After a file has been spooled, the system returns the message:

YOUR SPOOL FILE IS PRTxxx

where xxx is a 3-digit number identifying the file on the spool queue.
If a file has been spooled in error, it may be removed from the spool!
queue by the command:

SPOOL -CANCEL PRTxxx

where xxx is the identifying number of the spooled file.

The contents of the spool queue may be examined by the command:

SPOOL -LIST

A complete description of the SPOOL COMMAND with all its options will be
found in the documentation on the PRIMOS system.

RENAMING AND DELETING FILES

Renaming

Files may be renamed with the PRIMOS-level command:

CNAME oldname newname

where oldname is the current name of the file and newname is the desired
new name of the file. The user must have owner status in the UFD in order
to use this command.

Deleting

Files may be deleted with the PRIMOS-level command:

DELETE filename

where filename is the name of the file to be deleted; the user must have
owner status in order to use this command.

CAUTION

Do not use the DELETE command to delete a UFDf
subUFD, or segmented runfile (see Section 6).

REV. 0 3-14

PDR3057 COMPILING

SECTION 4

COMPILING

INTRODUCTION

Prime's FORTRAN IV Compiler, a one-pass compiler, produces highly
optimized code and i s supported by extensive function and subroutine
l i b r a r i e s to do f i le-handl ing, and both mathematical and logical
operat ions .

Source programs must meet the requirements of Prime FORTRAN IV as
specified in t h i s manual.

The compiler generates object code for e i the r the R-ident i ty or
V-ident i ty . R-ident i ty code i s loaded with Prime's Linking Loader
(LOAD), described in Section 5; V-identi ty code i s loaded with Prime's
segmented-addressing u t i l i t y (SEG), described in Section 6.
Segmented-addressing code can be executed on Prime 400 (or higher)
computers.

USING THE COMPILER

The FORTRAN Compiler i s invoked by the FTN command to PRIMOS:

FTN treename [-parameter-1] [-parameter-2]. . .[-parameter-n]

or

FTN [-parameter-1] -I treename...[-parameter-n]

treename is the treename of the FORTRAN source program
file.

parameter-1, etc are the mnemonics for the options controlling
compiler functions such as I/O device specifi­
cation, listings, and others.

All mnemonic parameters must be preceded by a dash "-". The name of
the source program file must be specified either as the first
expression following FTN or as -I treename (alternatively, -S treename)
but not both.

November 1977

SECTION 4 PDR3057

Examples:

FTN TEST1 -XREFL -64V -LISTING SPOOL

or

FTN -LISTING SPOOL -XREFL -INPUT TEST1 -64V

are equivalent.

The meanings of the parameters will be discussed later in this
section.

END OF COMPILATION MESSAGE

After the compiler has completed a pass of the specified input file,
and generated object code and listing output to the devices specified
by the parameter list, it prints one End of Compilation message at the
user's terminal after each END statement encountered.

The format of the compiler message is:

xxxx ERRORS [<yyyyyy>FTN-REVzz.z]

xxxx is the number of compilation errors; 0000 indicates

a successful compilation.

yyyyyy is: .MAIN, for a main program,

.DATA, for a BLOCK DATA subprogram,

the program entry name (up to 6 characters) for
a subroutine or function.

zz.z is the PRIMOS revision number.

Example:

0000 ERRORS [<.MAIN.>FTN-REV14.0]

i n d i c a t e s t h e success fu l compila t ion of a main FORTRAN program by
t he REV. 14 Compiler.

After compi la t ion of a l l r o u t i n e s in t he source f i l e , c o n t r o l r e t u r n s
t o PRIMOS.

REV. 0

PDR3057 COMPILING

COMPILER ERROR MESSAGES

The general format of the error message is:

**** LINE nnnn [context] name - message

nnnn

context

name

message

is the source line number that the statement in error
started on.

All lines read from an insert file have the same
source line number as the line with the $INSERT
command on it.

If an error is detected in an EQUIVALENCE statement,
the word 'EQUIVALENCE' is substituted for 'LINE
nnnn'.

Context consists of the last 1-10 nonblank characters
processed by the compiler before detecting the error.
This field can be used to isolate the position in the
statement that error occurs.

If the error is directly related to the misuse of a
specific name, that name will be included in the
error message. Otherwise, the field will be omitted.

A message up to 20 characters in length describing
the error. A list of all messages is given in
Appendix A.

Example:

**** LINE 0010 [WRUT] UNRECOGNIZED STMT

Note that the name field has been omitted.

COMPILER PARAMETERS

Normally, the source file will be stored in the disk file system, the
binary (object) file will be created on the disk, and the listing file
(if any) will be created either on the disk, at the user's terminal, or
spooled directly to the line printer. In these cases, all instructions
to the compiler are given by mnemonics in the FTN command line.

The A- and B-register settings are the instructions to the FORTRAN
compiler (set at compilation time) telling it which functions and modes
are to be enabled, and specifying the I/O. Using the mnemonic
parameters establishes the values of these registers for the user
automatically. Most users will have no need to set the octal values in
these registers explicitly.

November 1977

SECTION 4 PDR3057

I t i s possible for a user to employ other peripheral devices (paper
tape punch/reader, card punch/reader, magnetic tape) for making source,
l i s t i n g , or binary f i l e s . I t would generally be preferable to bring
the source program onto the d isk , compile using the parameter
mnemonics, and then transfer the l i s t i n g and/or binary f i l e s to the
desired device using PRIMOS commands. If for some reason t h i s i s not
poss ib le , the user may exp l i c i t l y se t the A- and B-register values to
allow d i r e c t access to and from these devices. The previous method of
specifying compiler options (by se t t ing the A- and B-register values
expl ic i t ly) i s s t i l l val id with the new compiler. This means exis t ing
command f i l e s which se t the A- and B-registers need not be changed.
(See Section 18).

Compiler Functions

The compiler functions enabled by the mnemonic parameters may be
considered to fall into four groups (Table 4-1).

• Specify Input/Output Devices

• Enable Listings/Cross References

• Memory Usage

• Operations

The defaults listed in this section are those supplied by Prime. The
system manager may change these at any particular installation. The
programmer should check with the system manager to determine if
defaults have been changed and, if so, which parameters are the new
defaults.

REV. 0

PDR3057 COMPILING

Table 4-1. Compiler Parameter Mnemonics
(• indicates Prime-supplied defaults)

Specify Input/Output Devices

BINARY
INPUT
LISTING
SOURCE

Specify binary (object) file
Specify source program file
Specify listing file
Specify source file (same as INPUT)

Enable Listings/Cross References

ERRLIST
• ERRTTY

EXPLIST
• LIST

NOERRTTY
• NOTRACE
• NOXREF

TRACE
XREFL
XREFS

Memory Usage

BIG

DEBASE
DYNM

• NCBIG
• SAVE

• 32R

64R

64V

Operations

DCLVAR
• FP

INTL
• INTS
• NODCLVAR

NOFP

SPO

Print error-only listing
Print error messages at user terminal
Print full listing
Print source program and error listing
Suppress error messages to terminal
Suppress global trace
Suppress cross-reference listing
Enable global trace
Print full cross-reference listing
Print partial cross-reference listing

Handle arrays spanning segment boundaries
(64V only)
Conserve Loader base areas
Enable dynamic allocation of local storage
(64V only)
No arrays spanning segment boundaries
Static allocation of local storage
32K words of relative-addressed user
space
64K words of relat ive-addressed user
space
15 (or 31) x 64K words of segmented
user space

Flag undeclared var iab les
Generate f loat ing-point skip ins t ruc t ions
INTEGER defaul t i s INTEGER*4 (long)
INTEGER default i s INTEGER*2 (short)
Do not flag undeclared var iab les
Suppress generation of f loat ing-point
skip ins t ruc t ions
Special l i b r a ry compilation

November 1977

SECTION 4 PDR3057

Specify Input/Output Devices

These parameters allow the user to inform the compiler of the input
source filename and to specify the listing and binary (object) files.

^INPUT

- I treename

^BINARY

-B treename

-B NO

-B YES

LISTING

-L treename

-L NO

-L YES

-L TTY

define input file/device, (alternatively
^SOURCE) (example: -I TEST or -S TEST)

The source program filename is treename.

To override default, define binary (object)
file/device.

The binary file will be created with the
treename specified, (example -B BTEST)

No binary file will be created. This might be
chosen if only the listing file were desired
at earlier stages of program development.

The binary file is created with the default
name B-filename, where filename is the name of
the source program file in the UFD in which
the source program file resides. The binary
file, however, is created in the UFD to which
the user is attached when invoking the
compiler.

If the BINARY parameter is not included in the
command line parameter list, it is equivalent
to -B YES.

To override default, define listing file.

The listing file will be created with the
treename specified. (Example -L ELM>LTEST)

No listing file will be created. At later
stages in program development or when minor
modifications are made to programs, it may not
be considered necessary to get a source
program listing.

The listing file is created with the default
name L^filename, where filename is the name of
the source program file in the UFD in which
the source program file resides. The listing
file, however, is created in the UFD to which
the user is attached when invoking the
compiler.

The listing is printed at the user's terminal.

REV. 0

PDR3057 COMPILING

-L SPOOL The listing file is spooled directly to the
line printer.

If this parameter is not included in the command line parameter list,
it is equivalent to -L NO.

Enable Listings/Cross References

These parameters enable or suppress program listings, error listings,
and cross-reference listings (concordances). In all cases except
ERRTTY (defined below) the enabling has no effect unless an output
device or file is specified by the -L parameter.

The program-, error-, and cross-reference listings discussed below are
generated for the following FORTRAN program example, POOH:

OK, SLIST POOH
GO
310 X=48

B=I*5
C=5-I
1=3

20 GO TO (100,310,320), I
320 A=B + C

1=1
GO TO 20

100 Y=A*X
WROTE (1,110) X

110 FROMAT (15)
CALL EXIT
END

In all the cases that follow the usual default error messages are
suppressed by including NOERRTTY in the parameter list to avoid
duplication since the listing device is the user's terminal.

Three errors will be found in this program:

1. The unrecognized statement WROTE (1,110) X, where WRITE has
been misspelled.

2. The unrecognized statement 110 FROMAT (15), where R and 0 have
been interchanged.

3. Statement 110 has an error in it and consequently there is no
label 110. This will generate an undefined statement number
error.

November 1977

SECTION 4 PDR3057

ERRTTY/tiOERRTTY

ERRTTY, which is the default, prints error messages at the user's
terminal. This feature may be suppressed by including NOERRTTY in the
parameter list.

In these examples, the error total is printed twice: as the last
statement of the listing, and in the compiler message to the user,
which is always printed at the user's terminal after compilation.

The first line of the program is printed at the top. The system
printing routine does this for all files assuming that the first line
of a file is to be treated as a header.

LIST/ERRLIST/EXPLIST

These are mutually exclusive parameters; each creates a type of
listing in the listing file/device. These parameters override the
program statements LIST, FULL LIST, and NO LIST.

ERRLIST - prints only the error messages on the listing device/file.

OK, FTN POOH -L TTY -NOERRTTY -ERRLIST
GO
310 X=48

**** LINE 0010 [WRUT] UNRECOGNIZED STMT
**** LINE 0011 [FROM] UNRECOGNIZED STMT
**** LINE 0011 [END] _110 - UNDEFINED STMT NO.
0003 ERRORS [<.MAIN.>FTN-REV14.0]
0003 ERRORS [<.MAIN.>FTN-REV14.0]

LIST - prints the source program with line numbers, and the error
messages. This is the default condition (if a listing file/device is
specified).

OK, FTN POOH -L TTY -NOERRTTY -LIST
GO
310 X=48

(0001) 310 X=48
(0002) B=I*5
(0003) C=5-I
(0004) 1=3
(0005) 20 GO TO (100,310,320),I
(0006) 320 A=B + C
(0007) 1=1
(0008) GO TO 20
(0009) 100 Y=A*X
(0010) WRUTE (1,110) X
**** LINE 0010 [WRUT] UNRECOGNIZED STMT
(0011) 110 FROMAT (15)
**** LINE 0011 [FROM] UNRECOGNIZED STMT
(0012) CALL EXIT

REV. 0

PDR3057 COMPILING

(0013) END
**** LINE 0011 [END] _110 - UNDEFINED STMT NO.
0003 ERRORS [<.MAIN.>FTN-REV14.0]
0003 ERRORS [<.MAIN.>FTN-REV14.0]

EXPLIST - prints the full listing: the source program, with line
numbers, the Prime Macro Assembler (PMA) code generated by the FORTRAN
statements and the error messages.

November 1977

SECTION 4 PDR3057

OK, FTO
GO
310

(0001)

(0002)
(0003)
(0004)
(0005)

POOH -L TTY -NOERRTTY -EXPL

X=48
310 X=48
000000.
000001:
000001:

: ELM
: JMP 000000
: LINK 000001
B=I*5
C=5-l
1=3

20 GO TO (100,310,320),1
000001
000003
000005
000006

: FLD =24756
: FST X
: LDA I
: MPY =5

(0006)

(0007)
(0008)
(0009)

000020.
000021:

LDA
STA

320 A=B + C
000022:
000023:
000024
000025
000026
000027
000030

]
(

100 !
000030
000032
000034
000036
000037
000040
000041

LDA
JST

: OCT
: DAC
: DAC
: DAC
: LINK
[=1
X) TO 20
(=A*X
: FLD
: FAD
: FST
: LT
: STA
: JMP
: LINK

=3
I

I
F$CG
000004
100
310
320

_320

C
B
A

I
20
100

(0010) WRUTE (1,110) X
**** LINE 0010 [WRUT] UNRECOGNIZED STMT
(0011) 110 FROMAT (15)
**** LINE 0011 [FROM] UNRECOGNIZED STMT
(0012)
(0013)

CALL EXIT
END

000041:
000042:
000042-
000043
000044:
000044

. JST EXIT
: LINK A
: OCT 000000
: OCT 000000
: LINK B
: OCT 000000

REV. 0 - 10

000055
000055
000056
000041.

**** LINE 0011
000022:
000001:
000030:

PDR3057

: LINK 24576
: OCT 060000
• OCT 000206
: DAC 100
[END] 110 -
DAC 20
DAC 310
DAC 320

CC

UNDEFINED STMT NO.

COMPILING

0003 ERRORS [<.MAIN.>FTN-REV14.0]
0003 ERRORS [<.MAIN.>FTN-REV14.0]

NOXREF/XREFL/XREFS

NOXREF is the default. XREFS and XREFL generate concordances
(cross-references); they are mutually exclusive in the parameter list,
XREFS appends a partial concordance to the end of the listing in the
listing file/device; XREFL appends a complete concordance.
Concordances are cross-reference tables between program symbols, their
line numbers and storage locations in memory. In the partial
concordance, symbols referenced only in specification statements are
not included. This is useful if there are COMMON blocks with many
variables of which only a few are used in the particular program unit
being compiled. The default condition, which is no concordance can be
obtained by not specifying any cross reference parameter or by
including NOXREF in the parameter list.

An example of the concordance is:

OK, FTN
GO
310 :

(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)

POOH

K=48
310

20
320

100

-L TTY -NOERRTTY -XREFS

X=48
B=I*5
C=5-I
1=3
GO TO (100,310,320),1
A=B + C
1=1
GO TO 20
Y=A*X
WRUTE (1,110) X

**** LINE 0010 [WRUT] UNRECOGNIZED STMT
(0011) 110 FROMAT (15)
**** LINE 0011 [FROM] UNRECOGNIZED STMT
(0012)
(0013)

CALL EXIT
END

**** LINE 0011 [END] 110 -UNDEFINED STI

- 11 November 1977

SECTION 4

A
B
C
EXIT
I
X
Y

100
110
20
310
320

R
R
R
R
I
R
R

PDR3057

000042
000044
000046

EXTERNAL 000000
000050
000051
000000

000041
000000
000022
000001
000030

0006M
0002M
0003M
0012
0002
0001M
0009M

0005
0011
0005D
0001D
0005

0009
0006
0006

0003 0004M 0005
0009

0009D

0008
0005
0006D

0007M

0003 ERRORS [<.MAIN.>FTN-REV14.0]
0003 ERRORS [<.MAIN.>FTN-REV14.0]

The f i r s t cojLumn i s the symbol, the second i s the data mode (R for
r e a l , I for in teger , e t c .) . The f i r s t numerical column i s the storage
address, the following numbers are l ine numbers of the statements in
which the symbols appear. If a symbol i s modified (appears on the l e f t
hand side of the = sign) the l e t t e r M i s suffixed. The l e t t e r D suffix
for statement label l ine numbers iden t i f i es the l i n e number a t which
tha t statement label i s defined. A complete l i s t of data mode codes
and l ine number suffixes appears in Table 4-2.

NOTRACE/TRACE

NOTRACE i s the defau l t . The TRACE mnemonic produces a t race for each
variable in the program. This parameter takes precedence over any
TRACE statement within the source program.

At object program run time (see Section 7) , any t race coding inserted
by the compiler causes a l ine to be typed consist ing of a var iable
name, an array name, or a statement number, followed by an equals s ign,
followed by the current decimal value assigned to tha t name. The
decimal value i s typed in INTEGER, FLOATING POINT, or COMPLEX format.

Example: a FORTRAN program PRIME has been writ ten to p r i n t a l i s t of
prime numbers between 2 and 50. The program wil l be compiled with the
TRACE parameter (the default binary f i l e name B_PRIME i s used). After
the program has been successfully compiled i t wil l be loaded and
executed using the Prime Linking Loader. (See Section 5 for an
explanation of t h i s .) Sample l i nes of TRACE information as typed a t
object run-time are shown.

OK, FTN PRIME -TRACE
GO
0000 ERRORS [<.MAIN.>FTN-REV14.0]
GO,

REV. 0 4 - 1 2

PDR3057 COMPILING

Table 4-2. Concordance Codes

Code Data Mode (second concordance column)

A ASCII

C COMPLEX

D DOUBLE PRECISION (REAL*8)

I SHORT INTEGER (INTEGER*2)

J LONG INTEGER (INTEGER*4)

L LOGICAL

R REAL (REALM) - single precisions

Line Number Suffixes

A Symbol is contained in the argument list of a
function or subroutine.

D Symbol is defined at this line number
(statement label).

I Symbol is initialized at this line (DATA
statement) .

M Symbol is modified (left hand side of
assignment statement).

S Symbol is in a data mode specification
statement.

- 13 November 1977

SECTION 4

OK, LOAD
GO
$ LO B PRIME
$ LI
LC
$ SA *PRIME
$ EX
FOLLOWING IS A LIST

2
3
5
7

OF

PDR3057

PRIME NUMBERS FROM 20 TO 50

K=
(2)

(4)
K=
(2)

11

13

K=
(4)
K=
(2)
(2)

47
(4)
K= 7
(2)
(2)
(4)
THIS IS THE END OF THE LIST

****ST

OK,

Memory Usage

32R/64R/64V

32R mode is the default. The compiler modes 32R, 64R, and 64V are
mutually exclusive. They cause the compiler to generate object code
suitable for operations in a user address space of 32K words
(relative-address), 64K words (relative-address) and 15x64K or 31x64K
words (segmented-address) respectively.

REV. 0 4 - 1 4

PDR3057 COMPILING

NOBIG/BIG

In the 64V mode, arrays which exceed 64K words of memory must be
handled by inserting BIG into the parameter list. BIG forces the 64V
mode and thus cannot be used in the 32R or 64R modes. A 64V mode
program which does not have arrays which span segment boundaries may be
compiled with BIG. It will compile, load, and execute properly,
although slower than if it had not been compiled with BIG.

NQBIG is the default parameter (see Secton 12 for details on large
arrays).

SAVE/DYNM

In the 64V mode, the inclusion of DYNM in the parameter list enables
dynamic allocation of local storage. This allows the use of recursive
subroutines (subroutines which call themselves). DYNM forces the 64V
mode and thus cannot be used in the 32R and 64R modes. If recursive
subroutines are used, DYNM is mandatory.

The default parameter is SAVE which enables static local storage
allocation. Static storage allocation is the only method used in the
32R and 64R modes.

DEBASE

Conserves Loader base areas. This parameter may be included for
programs compiled in 32R or 64R mode it should not be used for programs
compiled in 64V mode.

The default is obtained by omitting DEBASE from the parameter list.
(See the LOAD Section 5 for explanation of base areas.)

Operations

NODCLVAR/DCLVAR

Flags variables which have not, been declared in specification
statements. NODCLVAR is the default.

FP/NOFP

Suppress generation of floating-point skip operation. FP is the
default. The compiler will normally generate instructions from the
floating point skip set when testing the result of a floating-point
operation. If machine does not have the floating-point hardware,
suppressing these instructions will speed up execution.

- 15 November 1977

SECTION 4 PDR3057

SPO

System Program Optimization. (This also forces DCLVAR.) Generates
code in a special library compilation mode. Certain errors are not
flagged and some statements are interpreted differently then usual.
NOT recommended for general users. The default is the normal
compilation mode(s).

INTS/INTL

The Prime FORTRAN system has both Long (INTEGER*4) and Short
(INTEGER*2) integers. In the default (or INTS) condition the INTEGER
statement in a program is taken to be INTEGER*2. If INTL is included
in the parameter list then the INTEGER statement is taken to be
INTEGERM. This parameter eases the conversion of existing programs to
the Prime FORTRAN System.

A pomplete list of all parameters with more detailed comments on the
consequences of their usage will be found in the reference section
(Section 18).

Prohibited Parameter Combinations

The following combinations of parameters should not be used in a
land line:

Parameter Used

<parameter>
NO<parameter>
BIG
DEBASE
DYNM
ERRLIST
EXPLIST
INTL
INTS
LIST
NOBIG
NODCLVAR
NOXREF
SAVE
SPO
XREFL
XREFS
32R
64R
64V

Conflicting Parameter(s)

NO<parameter>
<parameter>
32R or 64R
BIG, DYNMf 64V
NOBIG, SAVE, 32R, or 64R
EXPLIST or LIST
ERRLIST or LIST
INTS
INTL
ERRLIST or EXPLIST
DYNM or 64V
SPO
XREFL or XREFS
DYNM
NODCLVAR
NOXREFS or XREFS
NOXREFS or XREFL
BIG, DYNM, 64R, or 64V
BIG, DYNM, 32R, or 64V
DEBASE, NOBIG, 32R, or 64R

The command line is parsed from left to right. Thus, the right-most
mnemonics take precedence over those to the left of them. Using the
prohibited combinations above will yield diverse results depending upon

REV. 0 - 16

PDR3057 COMPILING

the specific case. In almost all cases, the result will be
undesirable.

- 17 November 1977

PDR3057 LOADING AND LINKING

SECTION 5

LOADING AND LINKING

INTRODUCTION

The Prime Linking Loader utility (LOAD) operates on code produced by
the FORTRAN compiler (FTN) in the 32R (default) or 64R modes; code
produced in the 64V (segmented addressing) mode should be processed by
the SEG utility (Section 6).

The Linking Loader combines into an executable program a number of
program units or subroutines that have been independently compiled.
Some of the subroutines may have been held in a library; the Linking
Loader provides the facility for incorporation of any library
subroutines that have been referenced in the main program, as well as
resolving the cross-reference between them.

Prime's Linking Loader offers the following features:

• The loader is capable of loading code and COMMON anywhere in 64K,
above or below itself (but not on top of itself or its symbol
table!). (LOAD)

• The location of COMMON is movable by a keyboard command.
(COMMON)

• Partial or full load maps can be displayed on the user terminal
or written to a disk file. (MAP)

• An indefinite number of base areas can be specified; the loader
automatically uses the first available area which can be reached,
in preference to the sector 0 linkage area. (AUTOMATIC)

• The user can specify the instruction execution hardware available
in the CPU on which the loaded program will execute. This is
coordinated with the UII object blocks in load modules so that
the proper UII library routines will load automatically.
(HARDWARE) (UII - Unimplemented Instruction Interrupt)

• The user has the convenience of executing the program from the
keyboard in the Loader without having to return to the PRIMOS
command level. (EXECUTE).

Desectorization

The loader performs a function during loading cal led desec tor iza t ion .
The need for t h i s function a r i s e s because one-word memory reference

November 1977

SECTION 5 PDR3057

instructions cannot directly reference all of memory. The loader
compensates for this by generating a pointer to the operand in a base
area and then modifies the instruction to reference through the
pointer.

The pointer default base area is from memory locations '200 to '777.
For many programs, this area is sufficient. However, for larger
programs, this area might be inadequate. The loader has a number of
commands to enlarge the default base area and create local base areas.
(SETBASE and AUTOMATIC)

The base area below location '1000 can be used to desectorize any
instruction, no matter what its location. Local base areas (above
location '1000) can be used only to desectorize instructions in a
window around the local base area. The window extends approximately
'400 locations above and below the base area. (See Figure 5-1.)

The loader uses local base areas when possible in preference to base
area below location '1000. The location in base areas used by the
loader are not available for any other use during program loading or
execution.

Clearing the User Address Space

The PRIMOS level command FILMEM clears the user address space (for
non-segmented programs). It is suggested that this command be invoked
prior to the first use of the Linking Loader and after unsuccessful
loading attempts. FILMEM will clear the user address space and assure
the user of a clean start.

The command format is:

FILMEM

or

FILMEM ALL

and has the result below:

Command

PRIMOS II

Operating System

PRIMOS III, IV, V

FILMEM clears locations '100 to clears locations '100 to
'47777 except those oc- '77777
upied by PRIMOS II

FILMEM ALL clear all user space ' , clears locations '100 to
e^eit (oCc4"'~ô v5 ccc«^'#/ '177777

REV. 0

PDR3057 LOADING AND LINKING

Base Area

Code and data

Initial location of *PBRK

Location of *PBRK at end of load

Base Area

Location of *PBRK for start of next load

Figure 5-1
*PBRK locations before and after

loading an object module.

November 1977

SECTION 5 PDR3057

USING THE LOADER UNDER PRIMOS

The loader is invoked by the PRIMOS command:

LOAD

This loads the Linking Loader into locations '60000 to '63777 in the
user's address space. It is sometimes desireable to relocate the
loader, thus allowing initialized COMMON to occupy locations '60000 to
'63777. In this case, the loader should be invoked by the PRIMOS
coinmand:

HILOAD

which loads the Linking Loader into locations '174000 to '177777.
Except for the relocation, HILOAD is identical to LOAD as far as the
user is concerned.

Note

HILOAD may be used even if the FORTRAN program has
been compiled in 32R mode and will be loaded in 32R
mode (see MODE).

All loader functions are available through user terminal keyboard
commands. When the LOAD command is typed, the Linking Loader is in
command; the loader prints the $ prompt character on the user terminal
and awaits a command line.

Example:

LOAD
$

The $ prompt character means that the loader is in command mode until a
QUIT command is received. (The QUIT command returns control to PRIMOS
level). Each prompt character may be followed by a loader command,
according to the command definitions. After executing a command
successfully, the loader types the $ prompt character. If the load is
complete (i.e., there are no missing routines or modules), the loader
will type the message LC indicating that all external references have
been satisfied. (However, LC does not imply that all UII requirements
have been satisfied (see MAP and HARDWARE).

REV. 0

PDR3057 LOADING AND LINKING

Example:

OK, LOAD invoke loader
GO
$ LP B-*TEST load object program
$ LI load FORTRAN library
LC load is complete
$ ready for next command

If an error occurs in the Loader itself during an operation, the Loader
prints a two-letter error code, then the $ prompt character. Loader
error messages and suggested handling techniques are discussed
immediately following the section on commonly-used Loader commands and
in Appendix A. Most of the errors encountered are caused by large
programs where the user is not making full use of the Loader
capabilities.

When a system error (FILE NOT FOUND, NO SUCH UFD, NO ACCESS RIGHTS,
etc.) is encountered, the loader prints this system error and returns
its prompt symbol ($).

Command Files

The Loader also accepts commands from a command file. Comments may be
used in this file; an asterisk (*) is the first character of a comment
line. No spaces may appear in a comment line other than the one
directly after the asterisk. (See Example) A comment line is not
processed by the Loader.

Example of a Command File:

* COMMAND.FILE.TO.LOAD.THE.LOADER
FILMEM
* INVOKE.OLD.LOADER.
LO B+LOAD 174000
SA HILOAD
* NOW.USE.NEW.TO.CREATE.NEW.LOAD
EX
* NOW.WE.ARE.IN.HILOAD
LO B^LOAD 60000
SA LOAD
QU

Command Formats

Each Loader command consists of a command name followed by a series of
arguments:

COMMAND name-1 name-2 arg-1 arg-2. . .arg-n

where COMMAND is the command name, each name is a text string which may
be a PRIMOS filename or UFD name, and each arg is an octal argument
(numeric only) of up to six octal digits.

November 1977

SECTION 5 PDR3057

Long filenames (up to 32 characters) are supported; treenames may not
be used. Command names may be abbreviated to two characters.
Arguments are separated by spaces. In many cases, it is possible to
omit arguments. (If any argument is included ALL arguments to the left
of it in the command line must also be included). The Kill (?) and
Erase (") character functions are supported in the command line.

A complete list of the LOAD commands is given below. (Underlines
indicate minimum required abbreviation.)

Command

ATTACH

AUTOMATIC

COMMON

EXECUTE

FORCELOAD

El

HARDWARE

INITIALIZE

LIBRARY

LOAD

MAP

MODE

QUIT

SAVE

SETBASE

VIRTUALBASE

XPUNGE

Function

Attach to different UFD

Automatic generation of base areas

Relocate COMMON address

Initiate direct program execution in Loader

Forceload first module in object file

Forceload all modules in an object file

Hardware definition

Reinitialization

Load library object file
(i.e., object files in UFD=LIB)

Load object file

Generate Load state map

Select addressing mode

Begin loading at next page boundary

Return command to PRIMOS

Save loaded memory image

Define a new linkage area

Relocate base sector

Controls the deletion of symbols

REV. 0

PDR3057 LOADING AND LINKING

Loader Command Categories

It is convenient to discuss the Loader commands under three categories:

1. Commands the programmer uses quite often:

LOAD
LIBRARY
MAP
SAVE
EXECUTE
QUIT

2. Commands the programmer uses less often, usually in response
to specific program requirements (as overflowing memory, etc.)

FORCELOAD
F/
AUTOMATIC
SETBASE
COMMON
MODE
HARDWARE
INITIALIZE
ATTACH

3. Commands designed for the use of the systems programmer.
These are normally of very little use to the applications
programmer.

P/
VIRTUALBASE
XPUNGE

November 1977

SECTION 5 PDR3057

FREQUENTLY USED LOADER COMMANDS

See Table 5-1 for references to Load State Parameters as displayed in
the load map.

LOAD filename [loadpoint] [base-start] [base-range] (Format 1)

LOAD filename * prebase (Format 2)

Format 1: Loads the specified object file into memory.

filename is the object file to be loaded.

loadpoint is the starting address at which the file is to be
loaded; default is the current *PBRK.

base-start defines a base area starting address; default is
'200.

base-range number of locations in the base area; default is
'600.

Format 2; Loads the specified object file and defines base areas
before and/or after the file (see Figure 5-1). The current *PBRK is
used as the first location for this operation.

filename is the object file to be loaded.

prebase is the length of the base area to precede the
object file; it may be zero.

Do not specify more than 2 numeric parameters in Format 2 . The
results are unpredictable.

Notes

1. If all symbols in the load module have been previously defined,
the loader skips the module. A load module is defined to
terminate with an "END" statement. For example, the user defines
a new SQRT which is more accurate in the specific range of
application. This module is loaded, the library's SQRT function
is not loaded. It is possible to forceload modules in which all
symbols have been previously defined. This is discussed under
the less frequently used commands.

2. The compiler converts the program to binary format, creating a
new file with a new name (e.g., B+-MUX). This binary version must
be specified in the LOAD command.

REV. 0

PDR3057 LOADING AND LINKING

Table 5-1. Load State Definition

Parameter Definition
Value at Start
of Load (octal)

*LOW The lowest location in memory loaded 177777
*HIGH The highest location in memory loaded 0
*START The location at which execution will begin 0
*PBRK The next location in memory to be loaded 1000
*CMLOW The lowest location in COMMON XX777
*CMHGH The highest location in COMMON XX777
*SYM The lowest location used by the symbol table YY000
*UII The net hardware/UII package requirement

(see HARDWARE command for meaning)
0

NOTE:

XX = Last Sector
Occupied by Loader

YY = First Sector
Occupied by Loader

November 1977

SECTION 5 PDR3057

Example:

A FORTRAN program called MUX when compiled would generate a binary file
with a default name of B^MUX. The programmer loads this program as
follows:

OK, LOAD
$ LP B<-MUX
$ LI
LC
$

LIBRARY [filename] [loadpoint]

Temporarily attaches to the LIBRARY UFD, loads the specified file and
returns to the original UFD.

filename is the library file to be loaded; if omitted the
FORTRAN library FTNLIB is loaded.

loadpoint is the starting address for loading; if omitted the
current *PBRK is used.

MAP [filename] [option]

filename is the map file to be opened; if omitted the map will
be printed at the terminal.

option specifies type of map to be generated.

The loader will close the map file(s) , if any, at the end of the load
session.

Option
Number Load Map information

None Load state, base area, and
symbol storage map; symbols sorted by address

1 Load state only

2 Load state and base area

3 Unsatisfied references only

REV. 0 5 - 1 0

PDR3057 LOADING AND LINKING

MAP Option 1 - Load State Map

The load state map identifies:

The lowest and the highest storage memory locations

The location at which the program execution begins

The next location available for loading

The high and low COMMON area

The lowest location used by the symbol table

The net hardware UII package requirement

These eight parameters are printed in the load state map with a
corresponding storage address. (See Table 5-1.)

Example:

OK, LOAD
GO
$ LP B+SIMP
$ LI
LC

MAP Option 1 - Load State Map

$ MA 1
*START 001000 *LOW 000200 *HIGH 006512 *PBRK 006513
*CMLOW 063777 *CMHGH 063777 *SYM 057401 *UII 000001

MAP Option 2 - Load State Map and Base Area Map

The base area map includes the lowest, highest and next available
locations. Each line contains four addresses as follows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXX = Lowest location defined for this area
YYYYYY = Next available location if starting up

from XXXXXX
ZZZZZZ = Next available location if starting down

from WWWWWW
WWWWWW = Highest location defined for this area

- 11 November 1977

SECTION 5 PDR3057

The base area map includes a load state map:

$ MA 2
*START
*CMLOW

*BASE
*BASE
*BASE
*BASE

001000
063777

000200
001527
002515
003404

*LOW
*CMHGH

000220
001571
002557
003427

000200
063777

000777
001570
002556
003434

*HIGH
*SYM

000777
001570
002556
003435

006512
057401

*PBRK
*UII

006513
000001

Map Option 3 - Unsatisfied References Only Lists the labels and
external reference names which have been referenced but not loaded.

MAP Option Number Omitted - Full Map

A full map contains all components of a load map including a full
symbol storage listing.

The symbol storage listing consists of every defined label or external
reference name printed four per line in the following format:

Namexx NNNNNN

or

Namexx NNNNNN**

NNNNNN is a six-digit octal address. The ** flag means the reference
is unsatisfied (i.e., has not been loaded) . Every map begins with a
reference to the special FORTRAN COMMON block LIST, defined as starting
at location 1.

Example:

$ MA
*START 001000 *LOW 000200 *HIGH
*CMLOW 063777 *CMHGH 063777 *SYM

006512 *PBRK 006513
057401 *UII 000001

*BASE
*BASE
*BASE
*BASE

LIST
F$A1
F$A6
F$HT
AC4
IOCS$T
LUTBL

000200
001527
002515
003404

000001
001501
001512
004767
005052
005160
005256

000220
001571
002557
003427

F$WA
F$A3
F$CB
AC1
AC5
F$AT
PUTBL

000777
001570
002556
003434

001020
001501
002034
005047
005053
005172
005313

000777
001570
002556
003435

F$WX
F$A2
F$IOBF
AC2
WRASC
F$AT1
RSTBL

001026
001505
004660
005050
005054
005174
005350

F$IO
F$A5
F$ER
AC3
IOCS$
WATBL
O$AD07

001102
001505
004762
005051
005061
005237
005405

REV. 0 - 12

PDR3057 LOADING AND LINKING

Writing Map to File

Load maps may be sent to a file instead of the user's terminal. The
following example illustrates how the loaded memory image can be SAVEd
as a file (RUNFIL) in the UFD, and a Load Map stored in a file MAPI.

OK, LOAD invoke Loader
GO
$ LP B^SIMP load object file
$ LI load FORTRAN library
LC
$MA MAPI 1 send map to file MAPI
$SA RUNFIL save loaded memory image
$EX execute program

TEST MESSAGE output of program

Filename RUNFIL is now stored in the current UFD and filename MAPI
contains the MAP.

OK, SLIST MAPI
GO
*START 001000 *LOW 000200 *HIGH 006603 *PBRK 006604
*CMLOW 063777 *CMHGH 063777 *SYM 057374 *UII 000001

SAVE filename [aregister] [bregister] [xregister]

Saves the loaded memory image from *LOW to *HIGH, including all
initialized COMMON areas, in the current UFD. Also saved with the
program are the low, high, start, and keys parameters obtained from the
Loader (there is no option to set them).

filename is the name of the file in which the memory image is to
be saved.

a-register initial value of A register.

b-register initial value of B register.

x-register initial value of X register.

Note

Prime's convention i s to use * as the f i r s t
character of the Filename for the stored memory
image. The user i s not r e s t r i c t ed to t h i s
convention however.

- 13 November 1977

SECTION 5 PDR3057

EXECUTE [aregister] [bregister] [xregister]

Enables the user to start execution of the loaded program with
optional values preset into the A, B, and X registers. Execution
starts at the location specified by the *STAKT entry of the load
map.

QJJIT

Returns to the operating system command level with the user
attached to the home UFD or the last UFD specified in an ATTACH
command. If the Loader has opened a MAP file, it is
closed at this time.

REV. 0 5 - 1 4

PDR3057 LOADING AND LINKING

Loader Error Messages

The commonly occurring Loader error messages with suggested
remedies are listed below. A complete list is found in Appendix A.

Message Meaning

CM Command error. Illegal command format.

GT Group Type error. The Loader has encountered an
unrecognizable piece of object text. Loading is
discontinued. Make sure that object module was compiled
without errors.

The source module is not an object file (output of FTN,
PMA, etc.) or is a segmented-address object file (64V).

MI xxxxxx Multiple Indirect. While linking in 64R mode, the
Loader attempted to add indirection to an already
indirect instruction at location xxxxxx. The contents
of xxxxxx are the proper flag, tag, and op-code with an
address of zero. Loading continues. Object code may be
in 64V mode; recompile and then restart load.

MO Memory Overflow Errors. As users' programs become
larger, MO (memory overflow) errors become more common.
This section contains a description of the several
typical causes of these errors and suggested solutions
to these cause.

When MO error occurs, the user should do a 'MA 2' and
examine the map for any of the following possible
situations:

a. The address of the bottom of the symbol table (*SYM)
is at or close to *PBRK. This indicates that there is
not enough room below the Loader for the whole program.
HILOAD will probably solve the problem - assuming the
user is not already using HILOAD.

b. The sector zero base area is full - the next free
location is '1000. The size of the sector zero base may
be increased by a SETB 100 command at the beginning of
the load - if locations '100 to '200 are free - or an AU
command may be used to insert base areas throughout the
load. Alternatively, recompile using the DEBASE option.
(See AUTOMATIC, SETBASE).

c. *CMLOW is near *PBRK. COMMON should be moved to
higher memory using the CCmmon command. Re-initialize
using the FILMEM command. If COMMON must be moved above

- 15 November 1977

SECTION \5 PDR3057

'100000, it may be necessary to recompile the program in
64R mode and the program load must begin with a MO D64R
command. (See COMMON, MODE).

d. The program and data are too large to fit into 64K
of memory. The program modules should be recompiled in
64V mode and loaded using SEG (see Section 6).

e. None of the above. The user's program requires
initialized COMMON. COMMON is usually defaulted to
overwrite the space used by the Loader. Those locations
between the bottom of the symbol table and the top of
the Loader cannot be initialized as this would destroy
the Loader. The solution is to use a COmmon command to
move COMMON out of the way of the Loader. Possibly the
user will want to use HILOAD to permit COMMON to use the
locations normally used by the Loader. (See COMMON.)

OR Out of Reach. An attempt has been made to reference a
COMMON area that is out of reach of the load mode.

Begin the load with an MO D64R command, or move COMMON
to '100000 or lower with the CO command. (See COMMON,
MODE)

REV. 0 5 - 1 6

PDR3057 LOADING AND LINKING

LESS FREQUENTLY USED LOADER COMMANDS

These commands are generally used for one or more of these reasons:

• solving a specific problem in loading a program (see Loader error
messages)

• optimizing the loading of a program

• portability between different levels of Prime Computers

• added convenience to the programmer

Forceloading

Forceloading causes a module to be loaded even if all the symbols in
that module have been previously defined. This operation is useful in
building systems or program templates. There are two commands for
forceloading.

FORCELOAD filename [load-options]

Forceloads the first module in filename.

filename is the file to be forceloaded

load-options specify where the module is to be forceloaded; these
options are the same as the LOAD command options.

F/xx filename [load-options]

Forceloads all modules in the file specified.

xx is one of the load commands: LO, LI, or FO. If the LI

command is used and filename is omitted, then all of
the FORTRAN library file, FTNLIB, will be forceloaded.

filename is the file to be forceloaded. It may be omitted with
the LI command to forceload the FORTRAN library.

load-options specify where the file is to be forceloaded.
These are the same as the LOAD command options.

AUTOMATIC base-length

Causes the Loader to insert a base area of length base-length words
whenever the Loader detects the end of a routine and more than 300
(octal) locations have been loaded since the last base area was
inserted.

- 17 November 1977

SECTION 5 PDR3057

The value of base-length may be changed between load files. This
automatic feature is turned off with an AU 0 command.

AUTOMATIC helps to reduce the number of loads which are addressed
directly from the Sector zero base area by instructing the Loader to
insert base areas automatically.

SETBASE base-start [base-range]

or

SETBASE * base-range

Defines a base area that begins at base-start and includes the number
of locations specified by base-range. If the range is not specified,
the end of the area is location 777 of the sector containing the
Base-start location. Multiple Base areas are allowed. A command to
create a base linkage area overlapping a previously defined area is
ignored.

The command SE * creates a base area of the specified length to be
inserted at the current location. Thus, if *PBRK (base-start) is 1765,
the command SE * 20 creates a setbase area of length 20 at 1765 and the
*PBRK set at 2005 after the command has been executed.

The user may increase the size of the sector zero base area by the
command:

SE base-start

at the beginning of the load session.

Example:

SE 125 lowers the start of the sector zero base area to location
'125.

CAUTION

The start of the sector zero base area must not be set lower
than '100.

Default values for the sector zero base area are:

base-start '200
base-range '600

COMMON address

Moves the top or starting location of COMMON to the address specified.
Space for COMMON items is allocated downward from but not including the

REV. 0 5 - 1 8

PDR3057 LOADING AND LINKING

specified address. If COMMON is to be moved, this should be done
before loading any object modules.

The top of COMMON is the highest location used for COMMON by the
Loader. The default COMMON load address is the last location in the
last Loader sector. This means, for example, that the top of COMMON
for LOAD is '63777 (for HILOAD, it is '177777).

Note

To specify a COMMON load point, (top or starting
location) give the location desired + 1. For
example, CO 40000 specifies '37777 as the top
location in COMMON. This is for compatibility with
previous releases of the Loader.

MODE parameter

Directs the Loader to desector the FORTRAN load module in one of the
CPU addressing modes:

Parameter Addressing Mode

D32R 32K Relative (default value)

D64R 64K Relative

The mode command is used when an addressing mode other than 32K
relative is required.

Programs compiled in 32R mode must be loaded in D32R mode; programs
compiled in 64R mode may be loaded in D32R or D64R mode. The D64R mode
would be used if 32K words of user address space are not adequate.

The MODE command, when used, should precede any other command.

HARDWARE definition

Specifies the level of instruction execution hardware existing on the
CPU whereon the program is intended to be run. For increased speed,
some operations (as floating point and high-speed arithmetic) are
implemented by hardware on the higher-level Prime computers. If such
operations are attempted on lower-level Prime computers, a UII
(Unimplemented Instruction Interrupt) occurs and control is transfered
to the appropriate UII routine. This routine simulates the missing
hardware via software routines.

The FORTRAN compiler (FTN) outputs an object group informing the Loader
of the need, if any, for such hardware-implemented operations in any
given program module. The user may determine if such operations will
be needed by examining the value of *UII in a Load Map. If the value
is 0 (for a complete load), then it is not necessary to load the UII

- 19 November 1977

SECTION 5 PDR3057

library. If UII requirements exist, all or part of the UII library
must be loaded. The user minimizes the portion of the library loaded
by specifying the execution hardware of the machine to the Loader by
the HARDWARE command. The definition parameters are:

CPU

P400
P300/FP
P300
P200/HSA
P100/HSA
P200
P100

definition

57
17
3
1
1
0
0

FP: with optional floating-point,
arithmetic.

HSA: with optional high-speed

The hardware must be specified prior to loading the UII library. The
UII library must be the last module loaded before the program memory
image is SAVEd.

The UII library is loaded by the command LI UII.

INITIALIZE [filename] [load-options]

Initializes the Loader and then optionally performs the same actions as
a LOAD command. In the Loader's initialized state, the load state
parameters (Table 5-1) return to their initial values. If no filename
is provided, the Loader repeats its prompt character ($).

load-options Refer to the loadpoint, base-start and base-range
options available under the LOAD command. This allows
the programmer to restart a LOAD session without the
necessity of returning to the PRIMOS level and
re-invoking the Loader.

ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to different UFD's. This command is converted into a CALL to
the PRIMOS subroutine ATCH$$ and has exactly the same effect.

ufd-name Any User File Directory. However, the user is attached
to the home UFD when no UFD name is specified.

password The user gets owner or nonowner status according to the
password given. The password parameter is necessary onl}
when the UFD is password-protected.

REV. 0 - 20

PDR3057 LOADING AND LINKING

ldisk If the ldisk parameter is omitted, the Loader searches
only device 0 for the specified UFD. If an Ldisk value
of '100000 is specified, the file system searches all
started devices in logical unit order.

key The values for key most likely to be useful during
loading are:

0 Do not change home UFD.

1 Adopt named UFD as home UFD.

2 Attach to a sub-UFD in the current UFD; do not
set as home.

3 Attach to sub-UFD in the current UFD; set as
home.

The ATTACH command allows the programmer to load program modules stored
in different UFDs without the need of explicitly copying these program
modules into the UFD invoking LOAD.

Note

The LIBRARY command automatically attaches to the
library UFD in order to load the library module and
then re-attaches to the UFD in which LOAD was
invoked.

SYSTEMS LEVEL COMMANDS

P/xx filename 0 [base-start base-range]

Begins loading of the first module in the file at the next page
boundary. A page boundary is a location whose address is a
multiple of '1000.

xx is one of the load commands: LO, LI, or FO.

filename is the file to be loaded on a page boundary. If the
load command is LI, then omitting filename causes the
FORTRAN library, FTNLIB, to be loaded at the page
boundary.

base-start defines the base area starting address. The
default value is '200.

base-range is the number of locations (octal) in the base
area. Default is '600.

- 21 November 1977

SECTION 5 PDR3057

VIRTUALBASE base-start to-sector

Copies the base sector into the corresponding locations of the
to-sector. This command is used in building RTOS modules.

base-start first location in the base sector to be copied. The
base sector is copied from base-start to the base
sector end address.

to-sector the sector into which the base sector is to be copied,

XKJNGE dsymbols dbase

Deletes COMMON symbols, other defined symbols, and base areas.

dsymbols controls symbol deletion

dsymbols operation
0 delete all symbols except undefined symbols
1 delete all symbols except undefined symbols and

COMMON areas

dbase controls base area deletion

dbase operation
0 delete all defined base areas
1 delete all defined base areas except sector zero
2 retain all defined base areas

REV. 0 5 - 2 2

PDR3057 LOADING SEGMENTED PROGRAMS

SECTION 6

LOADING SEGMENTED PROGRAMS

INTRODUCTION

This section describes the use of SEG, which is Prime's utility module
for loading, modifying, and running segmented programs. A segment is a
64K word block of user's virtual address space. Segment '4000 is the
segment that SEG and other external commands occupy when invoked.
Segment '4000 is the lowest-valued non-shared segment in the PRIMOS
system. SEG creates a run file of up to 15 or 31 segments. (Check
with the systems manager to determine which version has been
implemented.)

PRIMOS assigns memory segments to a user as they are accessed. These
are not re-assigned until logout. Since only a fixed number of
segments are available for all users, extra segments should not be
invoked unless the user is actually executing or examining a segmented
program. Most of the functions of SEG use only one segment; only
those options which restore a runfile use extra segments, i.e.,
RESTORE, RESUME, and EXECUTE.

SEG must perform many of the operations on segmented runfiles which are
done to relative-addressed runfiles at the PRIMOS command level or by
the Linking Loader. Since the nature of SEG runfiles differs from that
of relative-addressed runfiles, separate commands are needed.

SEGMENTED RUNFILES

A segmented runfile consists of segment subfiles in a segment
directory. For this reason, you cannot delete a SEG runfile with a
PRIMOS-level DELETE command; instead, use the DELETE command in SEG.
(The TREDEL command in FUTIL can also be used to delete a SEG runfile,
but it operates much more slowly than SEG's DELETE.) Each segment of
the runfile consists of 32 ('40) subfiles of '4000 words each. Subfile
0 of the runfile is used for startup information, the load map, and the
memory image subfile map. Memory image subfiles begin in segment
subfile 1. Only the subfiles actually required for the runfile are
Stored on the disk.

SEG S LOADER

SEG has a v i r t u a l loader (i . e . , i t loads to a f i l e ra ther than to
memory) which requires the name of the runf i le before anything i s
loaded. The runf i le may be new or may be a previously used SEG
run f i l e , and may be in any UFD. A relat ive-addressed runf i le may not
be used.

November 1977

SECTION 6 PDR3057

As the symbol table is always available, SEG's loader may be used to
add modules to an existing runfile. Similarly, a partial load may be
saved with the SEG SAVE command and the load completed later. In
addition, selected modules may be replaced in a SEG runfile.

Functional Structure of SEG's Loader

The loader has three types of commands:

1. Commands which load object files

2. Commands which override the loader's defaults, ("how", "where",
"what", "how much", "from where".)

3. Commands which perform operations with the current state of the
load and/or with SEG itself, (e.g., getting a loadmap, executing
the program.)

Type 1: Commands which load object file, (LO, LI, RL, PL, IL)

These commands all have the possibility of having modifiers included on
their command line. These modifiers are never used in the basic SEG
load sessions. In fact, usually only LO and LI are needed.

Modifiers are:

a) Prefixes - P/, S/, D/, F/

b) Three numeric field suffixes. The form of these modifiers is
exactly the same for all loading commands.

Type 2: Commands that override Loader defaults (AT, A/SY, R/SY, SY,
SP, ST, XP, OP, CO)

Each of these commands requires an argument list unique to itself.
These commands are never required in the basic SEG Load session.

Type 3: Commands operating with the current state of LOAD or SEG (MA,
SA, EX, IN, QU, RE

One or more of these commands is necessary to complete the Load and
leave the Loader in an orderly manner. The most useful commands are
EX, SA, MA, and QU. Some of the type 3 commands have optional
arguments; no arguments are required in the basic SEG Load session.

Object File

The object file of the program modules must have been created using 64V
mode of the FORTRAN compiler. Modules written in other languages may
also be loaded, if they have been compiled or assembled properly.

PDR3057 LOADING SEGMENTED PROGRAMS

Code and data are loaded in separate segments to support re-entrant
procedures. Data consists of all COMMON blocks and link frames. The
Loader assigns code and data segments. The first segment ('4001) is
used for code. Usually segment '4002 will be used for data. The
Loader loads data and code into appropriate segments and opens new
segments as required. (It is possible to put both data and procedure
in the same segment to save space. Care is required not to create an
incorrect load. (See Section 12.)

The Stack

The Loader assigns a stack (which is a dynamic work area) when SAVE or
EXECUTE is invoked. The stack is usually assigned as the next free
location in the first procedure segment with '6000 free words. If no
such segment exists, a new data segment will be assigned with the first
location in the stack set to 4; locations 0 to 3 are used for internal
SEG information. The user may force the location of the stack and/or
may change its size. (See the Loader's STACK command and the
Modification sub-processor's SK command.)

SEG COMMANDS

When invoking one of SEG's functions, the form of the command is:

COMMAND filename-1 filename-2 par-1 par-2 par-3

Where filename-1 is the filename (or treename) of the file to be
accessed. Treenames enable files outside the current UFD to be
accessed. SEG remembers the name, and if the name is not changed, it
becomes the default. If no current file name has been established, SEG
will request a tree filename. In order to reference a new runfile, any
SEG command may be invoked with a new filename-1. The nature of the
other parameters depend on the function.

A complete list of the SEG commands follows. Commands may be
abbreviated to the underlined characters.

The code column specifies where the command is described in detail:

• This section
E Extended Functionality (Section 11)
S Shared Procedure (Section 12)
blank Intended for use at assembly language

level or for in-house use (see The PMA
Programmer's Guide, PDR3059)

November 1977

SECTION 6 PDR3057

Code Command

•
•
E
E
E

E
E
E

•

E
S
S
E
•
•
E
S

s
E
E
•
S
s
E
•
•
•

S

•

s
E
E

•
S
E
E
S
S

DELETE
HELP
MAP
MODIFY(SAVE)
NEW
PATCH
RETURN
SK
START
WRITE

PSD
QUIT
RESTORE
RESUME or RESUME
SHARE
SINGLE
TIME
VLOAD (LOAD)
VLOAD * (LOAD *)
ATTACH
A/SYMBOL

COMMON ABS
COMMON REL
D7XX
EXECUTE
F/xx
IL
INITIALIZE
LIBRARY
LOAD
MAP
OPERATOR
PL
P/xx
QUIT
RETURN
RL
R/SYMBOL

SAVE
SPLIT
STACK
SYMBOL
S/xx
XP

Function

delete a SEG runfile
print a list of SEG commands at user's terminal
generate a loadmap
invoke modification sub-processor
write new copy of SEG runfile to disk
modify save range of existing segment
return to SEG command level
alter stack size and/or location
change program execution start address
rewrite all segments to disk (to preserve patches)
invoke VPSD debugging utility
return to PRIMOS command level
bring SEG runfile into user memory
restore SEG runfile and begin execution
create R-mode runfiles for segments below '4001
create R-mode file image of single segment
print time and date of last runfile modification
define runfile and invoke loader for creation
define runfile and invoke loader for appending
attach to another UFD
define a symbol in memory and reserve space

for it using absolute segment numbers
relocate Common using absolute segment numbers
relocate Common using relative segment assignment
perform load using previous parameters
save load to disk and execute program
forceload all routines in object file
load the impure FORTRAN library
initialize and restart SEG's loader
load library file (UFD=LIB)
load object file (user UFD)
generate loadmap
relax/impose high level restrictions
load the pure FORTRAN library
load on a page boundary
return to PRIMOS command level
return to SEG command level
reload a routine
define a symbol in memory and reserve space
for it using relative segment assignment

save load to disk
break segment into data and procedure portions
change stack size
define a symbol at a specific location in memory
load a specific absolute segment
expunge symbols from symbol table; delete base
information

The addition of letters or using the command names in full will not affect
SEG's operation and may be used if this aids the programmer.

REV. 0

PDR3057 LOADING SEGMENTED PROGRAMS

Vestigial Commands

A number of commands exist whose functionality has been superseded,
either by improvements in SEG, improvements in PRIMOS itself, or for
increased clarity. For compatibility with previous revisions, these
commands are still supported and will perform exactly the same
functions as before. However, they will no longer be documented.

Typing these letter combinations will not generate error messages, but
users cannot be certain of the result. Do not use them.

• Commands at SEG level: LO, LO *, PA, SA

• Commands in the Loader: AS, FO, SH

• Commands in the modification subprocessor: A, B, EN, KE, X

November 1977

SECTION 6 PDR3057

SEG MESSAGES

When a load is complete, i.e., all references have been satisfied,
SEG's Loader prints the message DC at the user's terminal.

Error Messages

The message COMMAND ERROR and a new prompt character will be printed at
the user's terminal in response to an unrecognized command or a command
format error. The SEG Doader also has a series of error messages which
will be printed at the terminal. These are listed in Appendix A, along
with probable causes of the errors and suggestions for correcting or
eliminating them.

USING SEG

SEG is a command under CMDNCO; the FORTRAN programmer will invoke SEG
in one of two ways:

1. SEG filename - where filename is the filename (or treename) of a
SEG runfile. This command loads the runfile into segmented
memory and starts execution. This is analogous to the R Filename
command for programs loaded with Prime's linking loader (see
Section 7 - Execution) .

2. SEG - accesses the SEG commands allowing the user to load,
modify, and/or execute a SEG runfile. These are discussed in
this section, Section 11 and Section 12.

SEG displays a # on the terminal as a prompt character; the Doader and
Modification subprocessors display a $ as a prompt character to solicit
subcommands.

Command Files

SEG accepts commands from a command file.

Note

Command file comments, i.e., lines of the form

* THIS.IS.A.COMMENT

are supported only in SEG's Loader. Use of comments in any
other portion of SEG will give a non-fatal COMMAND ERROR
and a prompt character.

Filenames

SEG supports both long filenames and treenames. Treenames conform to
the PRIMOS standard with one exception. If a password is required to
obtain access, the entire treename must be preceded and followed by

PDR3057 LOADING SEGMENTED PROGRAMS

single quotes.

Example: An object file SECRET in UFD CYPHER is protected by password
CRYPTO. To load such a file, the command would be
structured:

$LOAD 'CYPHER CRYPTO>SECRET'

(where user input is underlined)

If a command is given and a SEG runfile name is required, the request:

SAVE FILE TREE NAME:

will be printed out. The user should enter a SEG runfile filename (or
treename).

The first time a SEG runfile name is entered, it is remembered by SEG
and becomes the established runfile name. In most commands, it is then
unnecessary to reference any SEG runfile if the established one is
meant. This remains the established runfile name unless a new SEG
runfile name is established by the user. (This is discussed under each
specific command.)

FREQUENTLY USED AND ESSENTIAL COMMANDS

HELP (SEG level)

Prints a list of the SEG commands at the user's terminal.

VLOAD [filename] or LOAD [filename] (SEG level)

This command accesses the SEG loader. Filename is the filename (or
treename) of a SEG runfile;
if filename is omitted, the established
runfile will be used. If filename is the name of an
existing SEG runfile, that runfile will be reinitialized before control
is

passed to the Loader.

To access existing runfiles, see SEG's VLOAD ̂ command
in Section 11.

The VLOAD (or VLOAD *) command performs three functions:

1. Defines (explicitly or implicitly) the name of the SEG runfile.

Note

Prime's convention is to use # as the first character of a
SEG runfile name (e.g., #TEST). Although the system does not

6 - 7 November 1977

SECTION 5 PDR3057

require this, the user should follow this convention unless
there are compelling reasons otherwise.

2. Specifies whether a new file is to be written or an existing file
is to be modified.

3. Transfers operations to the SEG Loader. The SEG Loader prints
the prompt character $ to differentiate itself from SEG-level
commands.

Loader Subcommands

The Loader has a large number of subfunctions. Most of these
subfunctions, specifically designed for use in creating very large
applications packages, shared procedures, and Prime in-house systems,
will probably be of little consequence to most users. Frequently-used
Loader commands are discussed below in their most common form. Other
Loader commands, including extended forms of the commands below, are
discussed later in Sections 11 and 12.

LOAD filename (Loader Subcommand)

Processes the object file, making it part of the runfile being created,
and linking it to other modules already loaded. All questions of
memory management are handled by the Loader.

filename is the filename (or treename) of the file to be loaded.

Usually filename will be of the form B_Prgname. The file should be an
object file created by the FORTRAN compiler with the 64V option. If
filename is not given or is an incorrect type (not an object file), an
error will be generated.

Note

If a treename is used, the loader remains attached
to the UFD (or sub-UFD) in which that file resides.
The user must explicitly re-attach to the original
UFD if desired, by typing AT in response to the $
prompt.

LIBRARY [filename] (Loader Subcommand)

Processes the library file in the same manner as LOAD processed object
files. In most cases, any libraries needed are loaded after other
object files.

filename is the name of the file in UFD=LIB which is to be loaded
into the runfile.

REV. 0

PDR3057 LOADING SEGMENTED PROGRAMS

rkz. -£»'(«- £ j ieA>a«He_ M ê>ir O € C L 4 ^ 1 ^ c o * u " a ^ ^ ^ L ^ e c i " +ex"f~ c<?'«f''p" (°r

assembled) in 64V mode; i f not , an error wi l l be ^generated. If
filename i s not supplied, the FORTRAN l ib ra ry f i l e s PFTNLB and IFTNLB
(in tha t order) wi l l be used.

Note

LOAD and LIBRARY are part of the Loader 's family of
Load commands. Both may be modified by optional
numeric parameters and/or command modifiers S/, F/,
D/ to give the user greater control over placement
of modules in the runfile. These options are
described in Sections 11 and 12.

MAP _3 (Loader Subcommand)

Prints a list of the unsatisfied references (i.e., procedures called
which have not been loaded) at the user's terminal. This command is
especially useful if the user does not get the LC (Load Complete)
message from the Loader. Loadmaps are discussed in detail in Section
11.

SAVE (Loader Subcommand)

Saves the result of the Load by writing all buffers out to the runfile
on the disk. A location for the stack is assigned at this time. (A
MAP command prior to SAVE will show no stack assigned; a MAP command
afterwards will give the assigned location of the stack.

EXECUTE (Loader Subcommand)

First SAVE's the program, if necessary, then executes it. After
execution control returns directly to PRIMOS. An EXECUTE command may
follow a SAVE command.

QUIT (Loader Subcommand)

Returns the user to PRIMOS command level. QUIT does not SAVE the
runfile. To keep the established runfile, perform a Loader SAVE prior
to QUITting.

DELETE filename (format 1) (SEG level)

or

DELETE (format 2) (SEG level)

This command deletes the SEG runfile filename (format 1) or the
currently established runfile (format 2). Filename is the name (or
treename) of a SAVEd SEG runfile.

6 - 9 November 1977

SECTION 6 PDR3057

Note

Do not attempt to delete a SEG runfile with the
PRIMOS level DELETE command. It will only delete
the segment directory, but not the subsidiary files
in the directory — which you then cannot delete.
If necessary to delete a runfile outside the SEG
utility, use FUTIL'S TREDEL command.

C/JIT (SEG level)

Returns the user to the PRIMOS command level.

EXAMPLE OF A LOAD

Assume that the user has compiled a main program, MAIN and a subroutine
in a separate source file named SUBR. Both have been compiled in 64V
mode using the default object file names. They could be loaded as
follows:

OK, SEG bring SEG into memory
GO
VLOAD #MAIN invoke the Loader and establish a runfile
$ LP B^MAIN load the main program
$ LP B<-SUBR load the separately compiled subroutine
$ LI load the FORTRAN libraries
LC indicates all references are satisfied
$ SAVE user saves the runfile (this is not strictly

necessary as the EXECUTE command will SAVE
the program)

$ EXECUTE first attempt to execute the program

OK, control returns to PRIMOS

REV. 0 6 - 1 0

PDR3057 EXECUTING PROGRAMS

SECTION 7

EXECUTING PROGRAMS

INTRODUCTION

This section treats the following topics:

• Execution of program memory images saved by the Linking Loader

• Execution of segmented runfiles saved by SEG's Loader

• Run-time error messages

• Installation of programs in the Command UFD (CMDNC0)

PROGRAM MEMORY IMAGES SAVED BY THE LINKING LOADER (32R AND 64R MODES)

Execution is performed at the PRIMOS level using the RESUME command:

OK, R filename

where filename is the program in the current UFD to be executed.

Programs which have been made resident in the user's memory may be
executed by a START command:

OK, S

Programs which have halted or been interrupted by the user may be
restarted at the beginning by the START command as:

OK, S 1000

These two commands are discussed in detail below.

RESUME filename

RESUME brings the memory-image program filename from the disk into the
user's memory, loads the initial register settings, and begins
execution of the program.

November 1977

SECTION 7 PDR3057

Example:

OK, R *TEST User requests program
GO execution begins
THIS IS A TEST output of program

OK, PRIMOS requests next command

Note

RESUME should not be used for segmented (64V mode)
programs; use the SEG command (discussed later)
instead.

START [start-address]

If a program has been made resident in memory (e.g., by a previous
RESUME command) START may be used to initialize the registers and begin
execution.

START can also restart a program that has returned control to PRIMOS
(for example, because of an error, a FORTRAN PAUSE or CALL EXIT
statement). If START is typed without a value for start-address, the
program resumes at the address value at which execution was inter­
rupted. To restart the program at a different point, specify an octal
starting location as the start-address value; the usual default value
for the beginning of FORTRAN programs is 1000.

Example:

OK, R TEST1
GO
INPUT NEW KEY: 5
QUIT
OK, S 1000
GO
INPUT NEW KEY:

Begin
execution starts
program asks for input
user hit CTRL/P to stop
restart program from beginning
execution restarted

The FORTRAN programmer will almost always use the default forms of the
RESUME and START commands (the form discussed here). For a complete
treatment of these commands see the PRIMOS INTERACTIVE USER GUIDE,
MAN2602.

Upon completion of the program, control returns to PRIMOS command
level.

SEGMENTED RUNFILES SAVED BY SEG'S LOADER (64V MODE)

Execution is performed at the PRIMOS command level using the SEG
command:

REV. 0

PDR3057 EXECUTING PROGRAMS

OK, SEG filename

where filename i s the filename (or treename) of a SEG r u n f i l e . SEG
load3 the runf i le into segmented memory and s t a r t s execution. SEG
should be used for runf i les created by SEG's loader; i t should not be
used for program memory images created by the Linking Loader.

Example:

CjK, SEG #TEST user request program
GO execution begins
THIS IS A TEST output of program

OjK, PRIMOS requests next command

Upon Completion of program execution, control returns to the PRIMOS
command level.

A SECi runfile may be restarted by the command:

S1 1000

provided both the SEG runf i le and the copy of SEG used to invoke i t are
in memory.

RUN-TIME ERROR MESSAGES

During program execution, error conditions may be generated and
detected by the FORTRAN mathematical functions, f i l e system subroutine
c a l l s , or the operating system. A l i s t of run-time e r r o r s i s included
in Appendix A.

R-Mode FORTRAN Functions

FORTRAN functions (COS, SIN, e tc .) used for programs compiled in the
32R and 64R mode generate error messges in t h i s format:

****cc <n>

where cc is a two-letter code and <n> is the FORTRAN logical unit
number; <n> is printed out only for I/O errors. When an error is
encountered, the error message is printed at the user's terminal. Most
errors return command to PRIMOS level.

V-Mode FORTRAN Functions

FORTRAN functions (COS, SIN, etc.) used for segmented (64V mode)
programs generate error messages in this format:

**** error-message

November 1977

SECTION 7 PDR3057

Errors detected are generally of the same type as those in the R-mode
functions; due to less restrictive program size constraints, error
messages have been made clearer. Most errors return control to the
PRIMOS level.

New File System Calls

In the new file system, subroutines return an integer error code as
part of their argument list. A non-zero value indicates the type of
error which has occurred. The error code value may be used to transfer
control in the program. The error message can be printed to the
terminal using the ERRPR$ subroutine. The error message format is:

standard-text user's-text-if-any (name-if-any)

where:

standard text is the file system standard error
message (listed in Appendix A,
Table A-4).

user ̂s-text-if-any is an optional message which the user
may elect to have printed

(name-if-any) is the program/subsystem detecting
or reporting the error. Again, the
user selects this text.

Example:

Following a call to PRWF$$, CODE was returned
as CODE=E$UNOP; the call:

CALL ERRPR$ (K$SRTN,CODE,'DO A STATUS',11,'PRWF$$ ', 6)

results in the message:

UNIT NOT OPEN. DO A STATUS (PRWF$$)

The new file system contains many improvements and enhancements of the
old; the use of the new system is strongly urged. The new system is
described in REFERENCE GUIDE, FILE MANAGEMENT SYSTEM (FMS), PDR 3110.

Note

The error code should always be checked for
zero/non-zero value to ensure that errors do not go
unnoticed.

In the list of standard error messages for new file calls, parentheses
enclose a list of subroutines most likely to generate that error;
brackets enclose the name of the error code corresponding to its
numeric value. (See Appendix A.)

REV. 0

PDR3057 EXECUTING PROGRAMS

Old File System Calls

The old file system calls are included for completeness. It is
suggested that users convert to the new calls. In the old file call,
if the user did not trap the error with an ALTRTN in the subroutine
call, the following would occur:

1. Error message printed at terminal

2. Control returned to PRIMOS

The error message would have appended to it, in parentheses, the name
of the file system subroutine in which the error occurred as:

BAD DAM FILE (PRWFIL)

Trapping the error with an ALTRTN allowed the user to obtain the error
code with the GETERR subroutine and print it at the terminal with the
PRERR subroutine. See PRIMOS FILE SYSTEM USER GUIDE, REV. A, MAN2604
for details. The two-letter error codes generated by these errors are
given in brackets following the old file call error messages.

Others

Error messages may be printed by other subroutines or by the operating
system. Error messages specific to execution of segmented programs are
labelled 64V mode. Some error messages indicate system problems beyond
the scope of the applications programmer; they are so indicated in the
explanation of the error message.

INSTALLATION IN THE COMMAND UFD (CMDNC0)

Run-time programs in the Command UFD (CMDNC0) can be invoked by keying
in the program name alone. This feature of PRIMOS is useful if a
number of users invoke this program. Only one copy of the program need
reside on the disk in UFD=CMDNC0.

Even more space is saved during execution by multiple users if the
program uses shared code (64V mode only). (See Section 12.)

Program Memory Images Saved by the Linking Loader

Installation in the command UFD is extremely simple. The runtime
version of the program is copied into UFD=CMDNC0 using PRIMOS' FUTIL
file handling utility.

Example:

Assume you have written a utility program called FARLEY. This utility
acts as a "tickler" for dates. Using FARLEY, each user builds a file
with important dates. The FARLEY utility program, upon request, prints

November 1977

SECTION 7 PDR3057

out upcoming events or occasions of interest to the user.

Note

This utility does not necessarily actually exist;
it is used as a plausible example.

First, compile the program

Compile in 64R mode OK, FTN FARLEY -64R
GO
0000 ERRORS [<.MAIN.>FTN-REV14.0] Compiler message

OK,
GO

LOAD

$LO B+FARLEY

$

•
*

$LI
LC
$SA *FARLEY

OK, FUTIL
GO
>TO CMDNC0 ORDER

>COPY *FARLEY FARLEY

>OUIT

OK,

invoke the Linking Loader

load the object file; the default
name is used

load other required modules

load the FORTRAN library
load is complete
save the memory image
return to PRIMOS

invoke the file utility

defines the TO UFD as CMD1̂ C0;
password is ORDER
copies the runtime program)
*FARLEY into UFD=CMDNC0
under the name of FARLEY
return to PRIMOS Command l^vel

It was not necessary to define a FROM UFD; the default (home) was
used.

Any user can now invoke this program:

OK, FARLEY
GO

invoke program
execution begins

asks for future time period HOW FAR:

etc.

Segmented Runfiles Saved by SEG's Loader

A segmented program cannot be run directly from UFD=CMDNC0 because
PRIMOS' command processor cannot directly handle the SEG runfiles. The

REV. 0

PDR3057 EXECUTING PROGRAMS

segmented program may be invoked by means of a non-segmented interlude
program in CMDNC0.

The procedure for creating an interlude is:

a. Create the desired SEG runfile.

b. Attach to UFD=SEG.

c. Run the command file CMDSEG; it will ask for a runfile name -
this name is the new SEG runfile name used in step d. This
command file will create the interlude program under the name
*TEST.

d. Make a copy of the SEG runfile in UFD=SEG using FUTIL's TRECPY
command. The name of the new SEG runfile should be the name by
which it will be invoked.

e. A copy of *TEST should be placed in UFD=CMDN0 using FUTIL's COPY
command. The file name should be that by which the program Will
be invoked.

Example:

a. Extensions to the FARLEY utility described above make it
desirable to compile and load it as a segmented program.

OK, FTN FARLEY -64V
GO
0000 ERRORS [<.MAIN.>FTN-REV14.0]

compile in 64V mode

OK, SEG
GO
VLOAD #FARLEY
$ LP B^FARLEY
$.

invoke SEG utility

establish runfile name
load object file

$ LI
$ SA
$ C/J
OK,

load 64V mode FORTRAN library
Save the file
return to PRIMOS

b. Attach to UFD=SEG

OK, A SEG
OK,

November 1977

SECTION 7 PDR3057

c. The command file CMDSEG creates the interlude program.

OK, GO CMDSEG

R *CMDMA
GO
RUN FILE NAME: FARLEY
FTN S$$SEG 1/5707
GO
0000 ERRORS (FTN
FILMEM
LOAD
MO D64R
CO 171400
LO B<-S$$S 171400
SETB * 5
AU 10
LO CMDLIB
AU 1
LI
QU
SAVE *TEST 171400 177777 171400 0 0 0 4000
DELETE S$$SEG
DELETE B*-S$$S
* FUTIL. YOUR.SEGMENTED.PROGRAM..INTO.UFD. 'SEG'
* WITH.THE.RUN.FILE.NAME.GIVEN.TO.CMDSEG
* FUTIL.*TEST.INTO.CMDNC0.WITH.THE.RUN.FILE.NAME.GIVEN.TO.CMDSEG
* YOU.NOW.HAVE.A.SEGMENTED.PROGRAM.WHICH.WILL.RUN.FROM.CMDNC0!

CO'TTY
OK,

d. UFD=SEG contains the SEG runfiles which are actually executed by
the interlude programs. The SEG runfile is copied here from the
UFD in which it was SAVEd.

OK, FUTIL invoke FUTIL
GO
>FROM MYUFD FROM UFD is user's old home UFD
>TRECPY #FARLEY FARLEY make a copy under the invocation
> name

There is no TO UFD defined as the default (home) is being used.

e. The interlude program *TEST is copied into the Command UFD under
the name by which it will be invoked.

REV. 0

PDR3057 EXECUTING PROGRAMS

>FROM * new FROM UFD - the current home
>TO CMDNC0 ORDER TO UFD=CMDNC0; password here

is assumed to be ORDER
>COPY *TEST FARLEY copy the interlude
>QUIT return to PRIMOS command level

OK,

When FARLEY is entered at the user terminal, the FARLEY interlude
program in CMDNC0 is executed. This program attaches to the SEG UFD,
restores the segmented runfile FARLEY, re-attaches to the user's home
UFD and begins execution of the SEG runfile.

If the SEG runfile requires only one segment of loaded information
(procedure, link frames, and initialized common) in user space (segment
'4000 and above) it is possible to include the interlude in the SEG
runfile. This is discussed in Section 12.

November 1977

PDR3057 DEBUGGING

SECTION 8

DEBUGGING

The following information will be discussed in the final version of
this document. The TRACE statement format is given in Section 16 of
this version.

CODING STRATEGY

Modular programs
Use of comments
Indentation and spacing
Inserting TRACE statements

COMPILER USAGE

Syntax checking
Compiler global TRACE option

PROGRAM EXECUTION

Use of TRACE output
Run-time errors

THE PM COMMAND

R-identity use
V-identity use

Using the SEG loadmaps

PROGRAM VALIDATION

Test cases
Intermediate value checking

- 1 November 1977

r

P A R T I I I

A D V A N C E D P R O G R A M M I N G T E C H N I Q U E S

PDR3057 OPERATING SYSTEM FEATURES

SECTION 9

OPERATING SYSTEM FEATURES

The following information will be discussed in the final version of this
document. For detailed information, refer to PRIMOS INTERACTIVE USER
GUIDE, REVISION A, MAN2602, PTU 31 and PTU 42.

COMMAND FILES

Construction of command files
Comment lines in command file
The COMINPUT command
The COMOUTPUT command

PHANTOM USERS

Command files for phantom users
the PHANTOM command
Monitoring job status
Halting a phantom user

SEQUENTIAL JOB PROCESSOR

Command files for sequential job processing
The CX command
Monitoring job status
Removing job from queue

SORT

Input file requirements
The SORT command

MAGNETIC TAPE

The MAGRST command
The MAGSAV command
The MAGNET command

9 _ 1 November 1977

PDR3057 FILE SYSTEM FEATURES

SECTION 10

FILE SYSTEM FEATURES

The following information will be discussed in the final version of this
document. For detailed information, refer to: REFERENCE GUIDE, FILE
MANAGEMENT SYSTEM (FMS) PDR 3110 and PRIMOS INTERACTIVE USER GUIDE, REVI­
SION A, MAN2602, PTU 31 and PTU 42.

FILE NAME CONVENTIONS

Long names
Tree names

FILE ACCESS METHODS

Sequential-access method (SAM)
Direct-access method (DAM)

FILE PROTECTION

Owner and non-owner access - the PROTEC command

EXAMINING FILES

File length - the SIZE command
Comparing files:

The FILVER command
The PUSS command
The SAVER command

FILE UTILITY (FUTIL)

Invoking FUTIL
Use of FUTIL
List of FUTIL commands

1 0 - 1 November 1977

PDR3057 EXTENDEirFEATURES OF SEG

SECTION 11

EXTENDED FEATURES OF SEG

THE SEG LOADMAP

Invoking SEG's Loadmap

MAP filename-1 [filename-2] map-option

or

MAP * [filename-2] map-option

Note 1.

Note 2.

Prints a specified load map of the currently established runfile or any
other SEG runfile to the user's terminal or to a file.

filename-1 is the filename (or treename) of a SEG runfile for which
a map is to be generated.

filename-2 is the filename (or treename) of the file into which the
map is to be written.

Map-Option

0 (or omitted)
1
2
3
4
5
6

Map Sections

all
I, II
I, II, III
VII (part)
all
not applicable
VII (part)

all

Map

Full map
Extent map only
Extent map and base areas
Undefined symbols only
Full map (identical to 0)
System programmer 's map
Undefined symbols, alphabetical
order
Full map, sorted alphabetically

Note 1

This format should usually be used to get a loadmap of a
runfile other than the established runfile.

If filename-2 is not supplied, the map is printed at the
user 's terminal.

11 November 1977

SECTION 11 PDR3057

Examples:

MA #TEST 3 print unsatisfied references in SEG
runfile #TEST at the terminal

MA #TEST ATLAS 7 write a full map of SEG runfile #TEST
into map file ATLAS

MA 1 print an extent map of the established
runfile at the terminal.

Note 2

If the runfile name has been established, this
format will write the map into the specified
mapfile filename-2. If filename-2 is omitted,
the loadmap will be printed at the terminal.

Example:

MA * ATLAS write a full map of the currently established SEG

file into mapfile ATLAS.

Contents of SEG Loadmap

The loadmap is particularly useful for:

• location where program halted (LB address after a crash)
• modules not loaded (MA 3 or MA 6)

• reason for stack overflow (SB address after a crash)

(Use of the PM command to obtain LB, SB, etc., addresses and their use
is discussed in Section 8 - Debugging.)

The full SEG load map consists of seven sections (see Figure 11-1 for
an example of MA 7), not all of which may be present in any load. In
particular, Section III may not be present in small SEG loads.

REV. 0 11

PDR3057 EXTENDED FEATURES OF SEG

I

II

*START 004002 000002 *STACK 177777 000000 *SYM 171470

SEG. #
004001
004002

TYPE
PROC##
DATA

LOW
001000
000000

HIGH
001441
000266

TOP
001441
000266

III *BASE 000000 000176 000242 000275 000275

IV ROUTINE
GETNUM
TUB
TlOB
TlOU
TBUFIN
TIDEC
TODEC
TONL

4002
4002
4002
4002
4002
4002
4002
4002

ECB
000043
000227
000247
000205
000117
000073
000141
000163

PROCEDURE
4001
4001
4001
4001
4001
4001
4001
4001

001036
001426
001434
001372
001174
001075
001277
001364

ST. SIZE
000016
000012
000012
000016
000020
000032
000020
000012

LINK FR
177437
177627
177627
177605
177517
177473
177541
177563

V DIRECT ENTRY LINKS
C1IN 4001 001412 EXIT 4001 001416 TNOUA 4001 001422

V I COMMON BLOCKS
DRW 4002 000036

VII OTHER SYMBOLS
**IIIABS 4002 000032

Figure 11-1. Full SEG Loadmap (MAP 7)

11 November 1977

SECTION 11 PDR3057

Section I - Extent; Section I is always present and contains the
currently assigned Start address (*START), Stack address (*STACK), and
the current bottom location of the symbol table (*SYM).

*START at the beginning of a load, the start address is initialized
to 000000 000000. (The first word is the the segment number;
the second word is the the address in the segment - both are
octal). SEG fills in *START for the first segmented
procedure encountered (usually the main program).

*STACK Current address of the start of the stack; initialized to
177777 000000 at the start of a load. This value is not
changed until a Loader SAVE or EXECUTE command is invoked.
(The first word is the segment; the second is the address —
both octal.) The default stack is in the first procedure
segment with 6000 (octal) free locations at the top of
memory.

*SYM address of the bottom of the symbol table; one word only as
it is a 64R mode address. Indicates to the user how much
space is left for the symbol table. To determine the
location of the top of the symbol table, generate a map prior
to loading; at this time the top and bottom of the symbol
table will be identical and *SYM will also be the location of
the top.

Section II - Segment Assignment Descriptions; Each segment is labeled
as procedure (PROC) or data (DATA); the segment chosen for the stack
is identified by ## following the segment type.

DOW lowest loaded location in the segment. (Not necessarily the
lowest assigned location.) Initialized to '177777 (-1) at
segment creation; if the segment is used only for
uninitialized COMMON areas, LOW is not changed.

HIGH highest loaded location in the segment. (Not necessarily the
highest assigned location.) Initialized to '000000 at
segment creation; if the segment is used only for
uninitialized COMMON areas, HIGH is not changed.

TOP highest assigned location in the segment. TOP should not be
lower than HIGH. If it is, the user may have specified
incorrect load addresses. When not using default values, the
user is responsible for loading into correct areas. TOP is
initialized to '177777 (-1) at segment creation. When space
is reserved for large COMMON blocks, the Loader will only set
TOP to a maximum of '177776 even though the entire segment to
'177777 is reserved.

11

EXTENDED FEATURES OF SEG
PDR3057

The reason for this is: a LOW, HIGH, and TOP of

177777 000000 177777 labels an empty segment.

Section III - Lists Base Areas (All values are octal):

*BASE W W W WWWWWW XXXXXX YYYYYY ZZZZZZ

W W W segment number

WWWWWW lowest location for base area

XXXXXX next available location if starting up from
lowest location

YYYYYY next available location if starting down from
highest location

ZZZZZZ highest location for base area

The lowest default location for the sector zero base area is '100.

There may be a sector zero base area in each procedure segment; there
must be none in data segments. Base areas other than sector zero ones
are generated by PMA modules.

Section iy - Describes all Symbols Related to Procedures; When a
routine (main program or subroutine) is compiled in 64V mode, the
compiled result is called a procedure. A procedure is composed of a
procedure frame (the executable code), an ECB (the entry control
block), a link frame (local storage, constants, transfer vectors) and a
stack fraijne (dynamically allocated storage which is created when the
routine is called and released upon return from the routine). This
section of the map describes these items. For FORTRAN procedures, the
ECB is part of the link frame. The procedure frame will be located in
a segment reserved for procedure frames. Link frames and COMMON Blocks
will be located in segments reserved for data.

The first pair of numbers in this section of the map is the segment and
word address for the ECB, the second pair is the segment and word
address for the procedure start.

Column 6 (ST. SIZE) is the size of the stack frame (working area)
created whenever the routine is called. Its segment (and location
therein) are assigned at execution time.

Column 7 (LINK FR.) gives the link 'offset' - this is '400 locations
lower than the actual position for compatibility with the information
printed by the PRIMOS PM command. The segment number is usually that
of the ECB.

1 1 - 5 November 1977

SECTION 11 PDR3057

The stack size and link frame information are useful in debugging and
are discussed in that section.

Procedures with no names, specifically a FORTRAN main program, are
identified by #### in the name field.

Section V - Direct Entry Links: At Rev. 14, PRIMOS IV supports direct
entry calls to the supervisor for certain routines. These are created
as fault pointers in the SEG runfile. Where references are satisfied
by these fault pointers, they will appear in the DIRECT ENTRY LINKS
section of the map. The FORTRAN programmer will not be concerned with
this map section.

Section VI - COMMON Blocks: Lists a COMMON Block, its segment number,
and word address in the segment. To save space, three COMMON blocks
are given on each line.

Section VII - Other Symbols (including Undefined Symbols): Lists the
symbol, its segment, and word address in that segment. As in Section
VI, the format is three symbols per line. Unsatisfied references are
preceded by **; for example

**COMO$$ 0006 064152

The numbers for unsatisfied references (segment and word address)
locate the last request for the routine (here COMO$$) processed by the
Loader. This allows the routines calling missing routines to be
identified. (See Section 8 - Debugging.)

Ordering Within Map Section

Section II - Segment table is sorted in order of creation.

Section IV - Procedures are normally sorted by address of executable
code (not ECB address) (MA, MA 4) or alphabetically by symbol name (MA
7).

Section V, VI, VII - Sorted by Address (MA, MA 4), or, alphabetically
by symbol name (MA 7).

MA 3 lists unsatisfied references (part of Section VI).

MA 6 lists unsatisfied references (part of Section VI) alphabetically
by symbol name.

REV. 0 11

PDR3057 EXTENDED FEATURES OF SEG

EXTENDED FUNCTIONALITY OF THE LOADER SUB-PROCESSOR

The Loader sub-processor is accessed from the SEG command level by the
VLOAD or the VLOAD * command.

VLOAD * [filename] (or LOAD * [filename])

This command accesses the SEG Loader, preserving the contents of the
specified runfile. VLOAD * should be used for:

• adding to an existing runfile (LOAD, LIBRARY)

• replacing a module in an existing runfile (RL)

• loading program modules to shared procedure templates
(Section 12)

filename is the filename or treename of a SEG runfile;
if omitted the established runfile will be used.

This section describes features in SEG's Loader useful for: more
advanced programming, solution of specific problems, user convenience,
and debugging.

The commands are:

ATTACH
INITIALIZE
RL (Reload)
STACK
MAP

COMMON REL
LOAD, LIBRARY and RL with arguments and the D/ prefix modifier
SYMBOL
R/SYMBOL

The l a s t four commands give the user addit ional l imited control over
program and COMMON placement within SEG's defaul t segments. They are
described following a discussion of the Loader's r e l a t i v e segment
assignment fea ture .

The SYMBOL and R/SYMBOL commands override some of SEG's t e s t i n g :
correct segment, enough room in segment, e t c . The user must perform
these functions i f SYMBOL or R/SYMBOL are used.

1 1 - 7 November 1977

SECTION 11 PDR3057

ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to another UFD.

ufd-name is the UFD; default is home UFD

password is the password of the UFD to be attached to,
if password-protected.

ldisk is the logical disk on which MFD is to be checked for UFD
specified.

0 or omitted search logical disk 0

100000 search all logical disks

177777 search logical disk on which
current UFD is located

key key giving attach/set information

0 attach to UFD in MFD; do not set home

1 attach to UFD in MFD; set home to new current UFD

2 attach to sub-UFD in current UFD; do not set home

3 attach to sub-UFD in current UFD; set home to new
current UFD

Since SEG supports treenames throughout, this command is a convenience
rather than a necessity. However, since the treenames involved may be
long, the user might find it easier and less subject to typing error to
attach to the UFD containing the object files to be loaded rather than
using the treenames of these files.

Note

After the completion of the ATTACH command (unlike library),
the user remains attached to the new UFD and must
specifically re-attach to the original UFD if desired.

INITIALIZE [filename]

Initializes SEG's Loader and restarts it. The SEG runfile will also be
initialized if it is an old file.

filename is the filename (or treename) of a SEG runfile; if omitted
the current runfile name is used.

REV. 0 11

PDR3057 EXTENDED FEATURES OF SEG

This command may be used to abort a bad load or to begin a new load
after a SAVE command.

IN Initialize currently established runfile
(bad load)

IN filename Open new SEG runfile filename (treename
is allowed)

RL filename

'Replaces' a routine or routines in a SEG runfile, making it possible
to replace a defective subroutine without having to completely rebuild
the runfile.

filename is the filename (or treename) of the file to
be reloaded.

The new module logically and functionally replaces the old module of
the same name by patching the entry point. The new module need not be
the same length as the old since it is not physically reloaded on top
of the old module.

Example:

RL B+tODULE places MODULE in SEG's defaul t segments and log ica l ly
replaces the old B+MODULE subroutine with the new one.

Redefinition of COMMON blocks i s not allowed; however, new COMMON
blocks may be added.

Note

The new module replaces the old module functionally but not
physically. Thus, the old module still occupies space in the
runfile. Overuse of the RL command may significantly
increase runfile size and restore and execution times.

CAUTION

To access an exis t ing runf i le for reloading, use SEG's VL *
(or LO *) Load command. I t i s advisable to use a copy of the
runf i le for reloading as a mistake may destroy the r u n f i l e ' s
i n t e g r i t y . The NEW subcommand of MODIFY (SAVE) may be used
for t h i s .

STACK s ize

Changes the amount of space required for the stack.

1 1 - 9 November 1977

SECTION 11 PDR3057

size is the minimum required stack size in words (octal).

Example: ST 100000

requires at least '100000 free locations in the segment used for the
stack. To force use of a whole segment, set size to '177774.

Note

This command can only change stack size; changes
of stack location must be done with the SK command
in the MODIFY (SAVE) sub-processor.

MAP [filename] [map-option]

Prints a loadmap of the currently established runfile to the user's
terminal or to a file.

filename is the filename (or treename) of the map file to be
opened by the loader; if filename is omitted, the map
will be printed at the user's terminal.

When a map file is specified, it is opened on PRIMOS Unit 13 and
remains open until the Load session is completed. Any additional MAP
commands specifying output to a file will use the one already opened;
exiting from the Loader (via EXECUTE, QUIT, or RETURN) closes the map
file. If the user has opened a file on PRIMOS Unit 13 prior to
invoking SEG's Loader, then this file will be used for the map. In
this case, leaving the Loader does not close the file.

map-option specifies the type of map.

The loadmaps and options are identical to those generated by SEG's MAP
command and are discussed in detail there. Omitting the map-option
gives a full map; inclusion generates partial and/or alphabetically
sorted maps.

The Loader's Relative Assignment Feature

User-controlled placement of modules with a load can be desirable for
reasons including:

• more e f f i c ien t runf i le

• aid in debugging

• i so la t ion of poten t ia l trouble spots

Two mechanisms are provided in the Loader for t h i s purpose: r e l a t i ve

REV. 0 1 1 - 1 0

PDR3057 EXTENDED FEATURES OF SEG

segment assignment (discussed below) and absolute segment assignment
(discussed in Section 12).

Relative segment assignment assigns reference numbers to SEG's default
segments; these reference number remain associated with their assigned
segments during a Load session. Since the Loader assigns and keeps
track of those segment numbers, the user retains the benefits of the
Loader 's internal checking functions (except as specifically noted).
Assignments are made by the COMMON REL command or in conjunction with
the Loader's family of Load commands (LOAD, LIBRARY, RL, etc.).
Reference numbers should be small positive values.

For example:

COMMON REL 3

or

LOAD B+tlAIN 0 1 2

(These commands are described in detail later in this section.)

The numbers 1, 2, and 3 are relative segment reference numbers. The 0
where segment reference number is expected, tells the Loader to use the
default segments without reference numbers. For example, the sequence
of load commands:

DO B«-MAIN
LO B+-SUBR 0 0 1
LI

can be used to separate SUBR's link frame from the link frames of the
rest of the program. This might be done if it were thought that SUBR
had a local array with incorrectly specified dimensions. (See the LOAD
command below for a fuller explanation).

COMMON REL segno

Allows the user to establish a reference number for segment(s) into
which COMMON will be loaded.

segno is the segment number into which COMMON will be
loaded, segno is always a small octal number.

Example:

CO REL 1

If data segment was assigned a relative value of 1 (see below) then
COMMON will be loaded into a segment with this relative segment
assignment number. If no such segment has been assigned, then this

11 - 11 November 1977

SECTION 11 PDR3057

command will declare one of SEG's default segments to be data segment
(relative) 1 and use it for loading COMMON.

When using SEG's default segment assignments, the COMMON RELATIVE
command will cause SEG to load the COMMON blocks into a different
segment than that used for the link frames. This often decreases the
size of the runfile which has to be restored. The user may also desire
to reserve space for certain COMMON blocks in a selected segment with
specific link frames. (See SYMBOL, R/SYMBOL.)

The Load Family

LOAD filename [addr psegno lsegno]
LIBRARY [filename] [addr psegno lsegno]
RL filename [addr psegno lsegno]

The Loader 's family of Load commands (of which LOAD, LIBRARY, and RL
have been discussed) has optional numeric arguments for load placement
control in conjunction with command modifiers (for example D/ as in
D/LO filename). Use of the arguments here will be as applicable to
relative segment assignment numbers. Reasons for their use was
considered above. The optional filename for the LI command has been
discussed previously under LIBRARY. Discussion here is confined to the
arguments.

addr specifies the starting point for procedure in the segment
with relative segment assignment number specified by
psegno. If specified to be 0, the current PBRK for that
segment will be used (TOP+1). Users will usually specify 0
for this parameter.

psegno a relative segment assignment number to be used in loading
procedure (the code).

lsegno a relative segment assignment number to be used in loading
link frames. COMMON will not be loaded with the link
frames unless a CO REL command specifying this same
relative segment reference number has been given prior to
loading this module.

If psegno and/or lsegno are specified as 0, the ordinary SEG default
segments without relative segment assignment numbers are used. IN ALL
CASES, the Loader creates the original (and additional) segments with
appropriate relative segment reference numbers as needed.

The reference numbers are incremented by the Loader as necessary;
thus, it is possible that some COMMON and link frame information will
appear in the same segments if suitable (possibly not the same)
relative segment assignment numbers are chosen.

REV. 0 1 1 - 1 2

PDR3057 EXTENDED FEATURES OF SEG

Example:

For a specific program, it is known (from the loadmap) that the link
frames occupy 2-1/2 segments and COMMON will occupy about 1/2
segment. The following commands will permit the last half segment
of link frames to occupy the top of the COMMON segment:

CO REL 3
LO B+MAIN 0 1 1
LO B+SUB1 0 1 1

LO B+SUBLAST 0 1 1
LI 0 1 1

The use of 1 for both psegno and l segno i s n o n - c o n f l i c t i n g , a s t he
Loader keeps t r a c k of which a r e procedure and which a r e l i n k
segments .

The D/ modif ie r t e l l s t h e Loader t o use t h e same numeric pa ramete r s a s
were used for t h e preceding Load family command. The example above i s
e q u i v a l e n t t o :

CO REL 3
LO B^MAIN 0 1 1
D/LO B -̂SUB1

D/LO B+-SUBIAST
D/LI

The commands: long form

LO B+-MAIN LO B̂ -MAIN
LO B+-SUB1 0 1 1 LO B^SUBl 0 1 1
D/LO B+SUB2 LO B+-SUB2 0 1 1
LI LI

cause MAIN and t he FORTRAN l i b r a r i e s t o be loaded in t h e same p a i r
(procedure and l i nk) of segments. SUB1 and SUB2 w i l l be loaded in t he
same p a i r of segments but t h e s e w i l l be a d i f f e r e n t p a i r from those
used for MAIN and the FORTRAN l i b r a r i e s .

The D/ modif ier i s e s p e c i a l l y useful for l a r g e l o a d s and in command
f i l e s . Use of D/ d e c r e a s e s input typing and t ime and minimizes e r r o r s ;
e d i t i n g command f i l e s i s made simpler (fewer changes) with l e s s chance
of e r r o r .

11 - 13 November 1977

SECTION 11 PDR3057

SYMBOL [sname] segno addr

sname is the symbol name

segno is the absolute segment (octal) in which the symbol is to
be located.

addr is the address (octal) in the specified segment for the
symbol.

SYMBOL may be used to define a symbol at a specific location in memory;
it is not necessary that the segment ever be defined by the loader.

SYMBOL does not actually assign a segment in SEG's segment table for
the symbol sname, but only an entry in the symbol table. Hence, the
command is useful for defining COMMON blocks whidh will not be restored
to memory (uninitialized) when a program is invoked; this will
decrease restore time prior to execution. SYMBOL may only be used to
define a symbol before it is referenced.

Note

SYMBOL cannot be used to define a COMMON block
which will be initialized by a DATA statement or
BLOCK DATA subprogram. Symbol names defined by
this command cannot be used to satisfy unsatisfied
references in a partial load.

Examples:

SY CYMBAL 4001 12000

locates symbol CYMBAL at segment '4001, location '12000.

SY 4015 1000

defines blank COMMON as beginning in segment '4015 at location '1000.
Here the user has located blank COMMON above the other program
procedure and data segments so that overflow of blank COMMON (indexes
out of range) will not overwrite other code. The user must determine
which segments and locations are to be used by examining SEG's
loadmaps. (See R/SYMBOL, COMMON.)

Example of Use: A program BENCH has 3 large (over 33K) COMMON blocks.
It is desired to reduce time to restore the runfile to memory and also
reduce the number of segments used. It has been determined that
segment '4000 (SEG's segment) is available above location '60000.
(This is actually the case at Rev. 14. This location may change,
mostly upward, from Revision to Revision. The exact location can be
obtained by RESTORing SEG and checking the top loaded location using
the PM command. See PRIMOS INTERACTION USERS GUIDE, MAN2602 for

REV. 0 1 1 - 1 4

3057 EXTENDED FEATURES OF SEG

details.) A previous load of BENCH determined that the procedure
loaded in segment '4001 ended well below '60000. Finally, the link
frames in segment '4002 would end well below '60000 if some of them did
not get loaded after the large COMMON blocks were declared.

The COMMON blocks are AA, BB, and AABB; none are initialized. They
will fit in the '120000 locations above '60000. The following load
sequence will reduce the number of segments used from 5 (including
SEG's) to 3.

SY AA 4000 60000
SY BB 4001 60000
SY AABB 4002 60000
LO B+BENCH

The user is responsible for placing the COMMON blocks and afterwards
must examine the loadmap to be sure that it conforms to expectations.

R/SYMBOL sname [segtype] segno size

sname is the name of the symbol.

segtype is the type of segment, either DATA or PROCEDURE; if
omitted, a data segment is assumed.

segno is the relative segment reference number. If 0 is
specified, the first avaible segment of the current type
is used.

size is the number of locations to be reserved for the symbol.
If omitted, it is assumed to be 0.

This command places a symbol and reserves 0 or more locations in memory
for it. This is especially useful in controlling the placement and
size of COMMON blocks during a load. If the segment specified does not
exist, or does not contain enough room, an appropriate new segment will
be created to locate the symbol.

CAUTION

The user must check that the number of locations
reserved for the symbol is sufficient if it is to
be used as a COMMON block (or for any other
purpose) .

These commands may not be used to satisfy unsatisfied references
already existing in the load.

11 - 15 November 1977

SECTION 11 PDR3057

Examples:

(TOP+1) is the next available location in a given segment - see MAP.)

R/SY COUSIN 0 1000

R/SY COUSIN PR 0 1000

R/SY COUSIN DA 1 0

places symbol COUSIN at the current TOP+1 in a
data segment with no reference number,
reserving 1000 (octal) locations for it.

place symbol COUSIN at current TOP+1 in a
procedure segment with no reference number,
reserving 1000 (octal) locations for it. This
is a way of placing a COMMON block in a
procedure segment.

place symbol COUSIN at current TOP+1 in a data
segment with reference number 1, reserving 0
locations for it.

In the above case, if a segment with reference number 1 did not exist,
it would be created and the address of COUSIN would be 0 (a special
case of TOP+1).

REV. 0 11 - 16

PDR3057 EXTENDED FEATURES OF SEG

THE MODIFICATION SUB-PROCESSOR

SEG's modification sub-processor is accessed by the SEG level command
MODIFY.

MODIFY [filename] or (SAVE [filename])

filename is the filename (or treename) of the SEG runfile; if
omitted, the established runfile name is used.

The command invokes the modification sub-processor. This sub-processor
allows the user to create a new runfile or modify and rewrite to the
disk an old runfile. Modifications permitted are:

• Change starting ECB address (not of consequence in FORTRAN)

• Change stack size and/or location

• Save a copy of a runfile modified with VPSD to the same or to a
new runfile

• Create a new copy of a shared procedure template file for
creation of a program using the template.

SK ssize Note 1.

or

SK segno addr Note 2.

Specifies either a new stack size (1) or absolute stack location (2).

Notes

1. ssize is the stack size (octal) in words. Changes the size
required for the stack (default is '6000). To reserve an entire
segment, set ssize to '177774. This form of the command would be

* used to handle stack overflow problems (a run-time error).

Example:

SK 60000 set up a stack of minimum length 60000 octal words in a
segment of SEG's choice. If 0 is specified for ssize, the
default value of '6000 is used.

2. segno is the specific (octal) absolute segment number; addr is
the starting (octal) address for the stack in the specified

11 - 17 November 1977

SECTION 11 PDR3057

segment.

This form of the command is used when the user has previously
reserved, during the load process, 4 locations in a data segment
(segno) for the stack header.

Note

addr must be 4 or greater, as locations 0 to 3 in
the segment where the stack is located are used for
stack hardware. When locating the stack in a
specific segment, be sure that locations 0 to 3
have not been allocated; reserve them using the
R/SY command.

Example:

SK 4000 122000

locate the start of the stack in segment '4000 at location '122000.

If extremely large stacks are required, extension stack segments may be
created. This is discussed in Section 12.

START segno addr

segno is the absolute (octal) segment number

addr is the new ECB address word (octal) in the segment for
start of execution.

One possible application of this command is the creation of template
programs with multiple entry points (i.e., programs alike except for
the start of execution location). If reset to 000000 000000 as part of
template creation, SEG's Loader will reset *START to the starting
address of the program using the template.

NEW filename

filename is the filename (or treename) of the new SEG
runfile which is to be created.

Duplicates all portions of a SEG runfile resident above segment '4000
under the specified new name. The full map and all references to
segments below '4000 are preserved. It may be used to create a
template for further additions. If there was a previous file named
filename, it is overwritten.

REV. 0 1 1 - 1 8

PDR3057 EXTENDED FEATURES OF SEG

CAUTION

If there is a segment '4000 in the runfile
containing loaded information below the symbol MAP
in SEG's load map, it will overwrite and crash SEG.

RETURN

Writes the entire runfile to the disk and then transfers control back
to the SEG command level.

11 - 19 November 1977

SECTION 11 PDR3057

SEG LEVEL COMMANDS

RESUME [filename]

or

RESUME [filename]

The runfile will be restored to memory, if necessary, and then
executed. At the PRIMOS level, the SEG filename command is preferred
to RESUME.

filename is the filename (or treename) of a SEG runfile. If
omitted, the currently established runfile is used.

TIME [filename]

Prints, at the user's terminal, the time of creation or last saved
modification of the file. Modification means any changes to the load
or starting parameters.

filename is the filename (or treename) of the SEG runfile. If
omitted, default is to the established runfile.

This command allows the user to know when the runfile was last modified
by anyone.

Example:

OK, SEG
GO
TI #TEST
07-21-77 14:13:14

REV. 0 1 1 - 2 0

PDR3057 SHARED CODE

SECTION 12

SHARED CODE AND OTHER ADVANCED
SEGMENTED PROGRAM TECHNIQUES

The following steps should be taken to create and load programs as
shared procedures: (Each step will later be considered in detail.)

Determine whether shared procedure is applicable and desirable

Write source code. Program must be identified as CALLable with
name MAIN. (FORTRAN header SUBROUTINE MAIN)

Compile in 64V mode.

Load to the runfile using the SEG Loader 's defaults to determine
size and placement of COMMON, procedure, etc.

With this information, initialize and load to the runfile,
splitting procedure and data portions of programs. Debug the
program.

Load for shared procedure and return to SEG command level.

Separate out segments below '4001 into separate R-mode runfiles
using SEG's SHARE command.

Incorporate runfiles below '4000 into segments for sharing using
PRIMOS' SHARE command.

APPLICABILITY

In general, programs which are small or which will normally only be run
by one user at a time are not candidates for shared procedure.
Programs which are expected to be run by many operators simultaneously,
especially large procedures which use relatively small amounts of data,
are excellent candidates for shared procedures. Examples of the latter
type include Prime's Shared Editor or a user-written order entry
system.

The advantages of shared procedures are:

• Only one copy of code is necessary for all users

• Decreases restore time

• Program is more likely to be in cache memory; operation is much
faster for multiple users.

• Decreased memory usage, reducing paging

12 November 1977

SECTION 12 PDR3057

Once it is determined that a program will be loaded as shared procedure
the programmer must obtain from the system manager the segment numbers
which are to be used for the particular program being loaded.
Currently, segments '2000 to '2037 are available as public shared
segments. Some of these segments may be occupied by Prime-supplied
programs. For example, if the Shared Editor is installed, it will
reside in segment '2000.

System Considerations for the Manager

Public shared segments are a large but finite resource; their
allocation should be made carefully and only for those programs which
will benefit by being loaded as shared procedure. It is possible to
incorporate more than one program in the same segment; the manager is
responsible that no conflict will exist from overwriting, etc.

WARNING

The public shared segments are re-initialized in a
cold start of PRIMOS. The systems manager should
include in the cold start command file the PRIMOS
SHARE commands necessary to reload these segments.
This also means the system manager must maintain
copies of the SEG runfiles for each program.

SOURCE CODE

The main program which is loaded first must be identified as a
subroutine named MAIN; i.e. the first statement of the program should
be:

SUBROUTINE MAIN

This header will work for either shared or unshared loading. In
unshared operations SEG will call the main program as a subroutine; in
shared operations the interlude program RUNIT will call the main
program. A loadmap will show the main routine as MAIN rather than ####
as would be the case if the main program had no header. It is not
necessary to include a RETURN statement as the CALL EXIT statement at
the end of the main program insures an orderly exit to PRIMOS command
level.

Note

Since the main program is labelled as a subroutine
named MAIN no other subroutine may have that name.
There is no subroutine or function of that name in
any of the Prime-supplied libraries; be sure that
no user subroutines involved in the load have the
name MAIN.

REV. 0 12

PDR3057 SHARED CODE

COMPILING

The source program is compiled with the 64V mode option; this produces
code to be loaded with SEG. If an array or COMMON block will exceed
64K words in length the program must be compiled with the BIG option.
If recursive subprograms (ones that call themselves) are used the
program must be compiled with the DYNM option. Both BIG and DYNM may
be used in the same compilation; either one forces compilation in the
64V mode. Use of and constraints on over 64K COMMON are treated later
in this section. Extension stacks, which may be necessary in certain
cases of recursive subprograms or if programs are chained are also
discussed later in this section.

LOADING

Loading for shared procedure is a multi-phase process. The aim is to
obtain an optimized load with program operating properly as designed.
It will be instructive to follow an example illustrating some general
principles.

As in the SEG Extended Use (Section 11) consider a program BENCH, with
3 large COMMON blocks AA, BB, and AABB. The FORTRAN library is
required. The simplest load, using SEG's defaults would be:

OK, SEG invoke SEG
#VL #BENCH establish runfile and access Loader
$LQ B̂ -BENCH load main program
$LI load FORTRAN library
LC load is complete
SA save result
MA MAPFIL generate a map in file MAPFIL to be examined
$QU return to PRIMOS
OK,

At this point the program will be executed and, if necessary, debugged.
As previously discussed (Section 11) the number of segments used can be
decreased by moving the location of COMMON blocks and the Stack. The
load would be:

OK, SEG invoke SEG
#VL #BENCH establish runfile and access loader
$SY AA 4000 60000 locate COMMON block in Segment '4000

above SEG
$SY BB 4002 1000 put BB in segment '4002
$SY AABB 4001 10000 put AABB in segment '4001
$LQ B*-BENCH load user program
$LI load FORTRAN library
LC load complete
$SA save load
$RE return to SEG command level
#MO invoke Modification Subprocessor
$SK 4001 170000 place stack above AABB in segment '4000

1 2 - 3 November 1977

SECTION 12 PDR3057

and assign it '170000 locations
#RE return to SEG Command level
#MA * MAPFIL get a loadmap
#0U return to PRIMOS command level

Since the user has taken over some of SEG's functions, the user must
check the loadmap to see if the load is reasonable. It would not be
amiss at this point to be certain that the program executes properly.

WARNING

Relative assignment numbers (see Section 11) and
absolute segment numbers must not both be used in
the same Load.

LOADING FOR SHARED CODE

Loading for shared code requires the capability of being able to
separate the procedure frame from the linkage frames. This capability
exists in the advance functionality of the Loader commands. Other
commands in the Loader allow placing of COMMON and other symbols using
absolute segment numbers, expunging defined symbols from SEG's symbol
table, and forceloading.

The Loader also allows segments to be split into procedure and data
portions to conserve segments and/or to load into segment '4000 the
R-mode Interlude program RUNIT. RUNIT allows the segmented program to
be invoked as an R-mode program from the user's UFD or installed in
UFD=CMDNC0. These commands will be discussed later in this section.

SPLIT segno addr Note 1.

or

SPLIT addr Note 2.

or

SPLIT addr ssegno saddr esegno Note 3.

Breaks a segment into procedure (lower) and (upper) portions. This
operation conserves segments. It also allows the loading of RUNIT as
an aid to creating shared programs.

segno is the absolute octal segment number.

addr is the location of the split in the segment. Addr must
be a multiple of '4000.

REV. 0 12

PDR3057 SHARED CODE

Notes

1. Splits the segment into procedure and data portions as specified;
used to decrease number of segments used.

Example

SP 4000 10000 - splits segment 4000, with locations below '10000
for procedure and the rest of the segment for data.

2. This is the form used for shared procedure. Segment '4000 is
assumed. In addition to splitting the segment, the interlude
program RUNIT is loaded (in 64V mode) beginning at location
'1000.

No data or procedure may be assigned to locations above '172000
in segment '4000, as this is where RUNIT places its stack.

After splitting, RUNIT and RESUME will exist in SEG's symbol
table. RUNIT is the normal starting address; RESUME may be used
as a starting address if the existing stack is to be preserved.

3. Splits segment '4000 and supports extension stacks.

segno is the segment in which the stack will begin

saddr is the beginning stack address in Ssegno

esegno is the first segment available for stack extensions

Example

SP 10000 4001 177720 4005

Splits segment '4000 is a procedure portion below '10000 and a data
portion above. During execution the stack will begin at location
'177720 in segment '4001 and, as needed, an extension stack will be
created in segment '4005, etc.

At least 12 ('15) words must be available in the primary stack segment.

The non-zero value of saddr distinguishes this form of the SPLIT
command from its other forms.

Note

Once a segment has been split it is addressable
only specifically, i.e. with the S/xx or P/xx
command (or with D/xx following an S/xx or P/xx
command). Loading must use absolute segment
numbers. See S/xx, D/xx, P/xx.

1 2 - 5 November 1977

SECTION 12 PDR3057

CAUTION

SEG's Loader does not keep track of split segments
and may assign the stack to the top of the
procedure portion of a split segment. This may
cause problems if there is not enough space between
the end of the procedure portion and the start of
the data portion.

A/SYMBOL sname [segtype] segno size

Places a symbol and reserves 0 or more locations in memory for it. If
the segment specified does not exist it will be created.

sname is the name of the symbol.

segtype is the type of segment, etither DATA.
or PROCEDURE; if omitted, a data segment is assumed.

segno is the absolute octal segment number.

size is the number of locations to be reserved for the symbol
if omitted; 0 is assumed.

CAUTION

The user must verify that the number of locations
reserved for the symbol are adequate for its
intended use and that there is actually sufficient
room in the segment for the size specified.

This command may not be used to satisfy unsatisfied references already
existing in the load.

Example: (TOP +1 is the next available location in a given segment).

A/SY KELVIN 4002 1000 place symbol KELVIN at the current TOP+1 in
data segment '4002 reserving 1000 (octal)
locations for it.

A/SY KELVIN PR 4001 1000 place symbol KELVIN at current TOP+1 in
procedure segment '4001 reserving 1000
(octal) locations for it.

The above is a way of placing a COMMON block in a procedure segment.

A/SY KELVIN DA 4001 1000 place symbol KELVIN at current TOP+1 in
data segment '4001, reserving 1000 (octal)
locations for it.

REV. 0 12

PDR3057 SHARED CODE

If the segment specified above did not exist, it would be created and
the address of KELVIN in it would be 0. (a special case of TOP+1).

COMMON ABS segno

Loads COMMON into the specified segment.

segno is the absolute octal segment number into
which COMMON will be loaded.

When loading into specific segments this command should be used to
specify the COMMON segment either as the one into which the link frames
are loaded or another if there is some reason to move COMMON away from
the link frames.

CO ABS 4015

will cause the loader to load all COMMON into segment '4015 so long as
it will fit, then into segment '4016, '4017, etc. This bypasses SEG's
normal default segment assignments.

CAUTION

Since SEG's normal defaults are bypassed by this
command, it is the user's responsibility to be
certain that segments being reserved for loading
COMMON have not been reserved for other uses.

Advanced Functionality of the Loader's Family of Loading Commands

The complete family of loading commands are:

LOAD load an object file (user UFD)

LIBRARY load a library object file (UFD=LIB)
RL reload an object module
PL load the PFTNLB file (UFD=LIB)
IL load the IFTNLB file (UFD=LIB)

The first three commands have been discussed in Section 6
PL and IL load the pure and impure FORTRAN libraries respectively.
(Relative segment assignments may be used with PL and IL but there
would rarely be a need for this.) Relative and absolute loading must
not be mixed in the same load.

Modules may be loaded into specific segments for procedure and link
frames by use of the S/ prefix modifier.

The command format is:

S/xx [filename] addr psegno lsegno

xx is LO, LI, RL, PL, or IL.

1 2 - 7 November 1977

SECTION 12 PDR3057

If DO or RL is used filename is mandatory.

If LI is used filename is optional.
(omission loads PFTNLB and IFTNLB)

If PL or IL is used filename should be omitted.

addr is the starting load address in the procedure segment.
An addr of 0 is interpreted as start loading at the
current pointer position in the procedure segment. This
is the usual value.

psegno is the procedure segment number.

1segno is the data linkage segment number

Both psegno and 1segno are absolute (octal) segment numbers; both must
be supplied. When loading shared code, procedure will be loaded in
segments '2000 - '2037 as allocated by the system manager.

As with the Load into relative segment commands the segments required
will be created if they do not already exist. If a required segment
runs out of room the next segment in sequence will be created and used
to continue the Load. For example, if the user has declared psegno to
be '2000 and segment '2000 becomes too full for the next routine to be
loaded, segment '2001 will be created as a procedure segment and the
Load will procede in segment '2001. Note that some smaller routines
may subsequently be Loaded in segment '2000. The S/xx modifier does
not place COMMON areas; this should be done using the 00 ABS command
prior to the load.

Example:

S/LO B_JUNK 0 2000 4002 load object file B_JUNK with its procedure
beginning at the current load pointer
location in segment '2000 and its data
linkage areas beginning at the current load
pointer in segment '4002. Previously COMMON
was located with a CO ABS command.

S/IL 0 4000 4000 load the impure portion of the FORTRAN

library into the split segment '4000.

As with relative assignment numbers the D/ modifier prefix may be used.

Example:

S/LO B_BENCH 0 2000 4000
D/PL

REV. 0 1 2 - 8

PDR3057 SHARED CODE

is equivalent to

S/LO BLENCH 0 2000 4000
S/PL 0 2000 4000

CAUTION

When using this modifier (S/) some of SEG's
checking mechanisms are overidden. Therefore, the
user must carefully examine the loadmap to make
sure there is no inconsistency or confusion.

The S/ modifier may not be combined with the D/
modifier either as D/S/xx or S/D/xx.

Forceloading; When a file is loaded, normally only those routines
referenced by previously loaded modules (or by routines in the library)
are loaded. When building templates or creating partial loads it is
often desirable to force all routines in a file to be loaded.
Forceloading in SEG's Loader is accomplished with the F/ modification
prefix as:

F/xx [filename] [addr psegno lsegno] Note 1
or

F/S/xx [filename] [addr psegno lsegno] Note 2

xx is one of the loading commands, DO, LI, RL, PL, or IL.

filename is the file name (or tree name) of the object file. It
is mandatory for LO and RL, optional for LI and should be
omitted for PL and IL.

addr is the start address for forceloading in the procedure
segment.

psegno is the procedure segment number

lsegno is the data segment number

Notes

1. This is a simple forceload of the object file filename. Both
psegno and lsegno are relative assignment numbers. The defaults
resulting if parameters are omitted are the same as for the
commands without the F/ prefix.

Example:

F/LO BATHINGS forceload all modules in BATHINGS in default
segment.

1 2 - 9 November 1977

SECTION 12 PDR3057

F/LI - forceload all the FORTRAN library in default segments

2. Forceloads object file to specific segments. Both psegno and
lsegno are absolute (octal) segment numbers (see S/xx for
details). This format would be used for forceloading shared
procedures.

Example:

F/S/PL 4000 2000 4002 - forceload all of the procedure of the
FORTRAN library PFTNLB beginning at
location '4000 in segment '2000 with
linkages area in segment '4002.

Note

S/F/xx is identical to F/S/xx.

The D/ prefix may be combined with F/.

S/LO B-BENCH 0 2001 4002
F/S/PL 0 2001 4002

is equivalent to

S/LO B^BENCH 0 2001 4002
F/D/PL

XPUNGE dsymbol dbase

Expunges some or all defined symbols from the symbol table. Undefined
symbols may not be removed.

dsymbol Action

0 delete only entry points, leaving COMMON areas
1 delete all defined symbols, including COMMON areas

dbase Action

0 retain all base information
1 retain only sector zero information
2 delete all base area information

XP dsymbol is equivalent to XP dsymbol 0

XP is equivalent to XP 0 0

RETURN

Returns the user to the SEG command level. This command does not SAVE
the runfile; the user should perform the SEG SAVE sub-command before

REV. 0 1 2 - 1 0

PDR3057 SHARED CODE

the RETURN if the established runfile is to be kept. After loading for
shared procedure has been completed, the load must be SAVED; control
returned to the SEG level and SEG's SHARE command invoked.

SPLITTING OUT

After the Load has been completed, the portions of the SEG runfile
corresponding to segments below '4001 must be transformed into R-mode
runfiles using SEG's SHARE command. These files are similar to the
relative addressed mode save files having a conventional save file
header. No files are created for segments above '4000. If segment
'4000 exists and it includes RUNIT (see SPLIT), it may be executed at
PRIMOS command level. The command format is:

SHARE [filename]

filename is the filename (or treename) of the SEG runfile. If
omitted, the established runfile name is split out.

The RUNIT interlude program sets the correct addressing mode; starting
location and registers are set to the standard default values.

SEG responds to the SHARE command by asking for a two-character ID.
SHARE will use this ID to build the save files with the name yyxxxx,
where yy is the ID given to SHARE and xxxx is the segment number.

Example:

#SH #TEST (using default values)
TWO CHARACTER FILE ID: BE
CREATING BE2000
CREATING BE4000
(ready for next SEG command)

SEG's SHARE command creates a R-mode runfile for all segments below
'4001. The SINGLE command creates an R-mode runfile for any specified
segment, even those above '4000. The command is:

SINGLE [filename] segno

filename is the SEG runfile name; if omitted, the established
runfile is used.

segno is the segment number to be used to create the runfile.

As in the SHARE command, the user is asked for a two character ID.

12 - 11 November 1977

SECTION 12 PDR3057

Example:

#SI 4001
TWO CHARACTER FILE ID: IX
CREATING 1X4001

The SINGLE command only works for segments loaded with the S/xx
command.

Including the R-mode interlude in the SEG runfile

This method is of particular use in three cases:

1. The user's program has a small procedure part requiting a large
data area.

2. The user has a large program, most of which is loaded below segment
'4000 as shared procedure.

3. The user's program is primarily a 'transaction processing' system
and most of the user's (large) program can be loaded at LOGIN time,
or is loaded below segment '4000 as shared procedure.

In case 1 the user will force all of the loaded portion of the program
to reside in segment '4000. Uninitialized COMMON blocks will be
declared in other segments and need not be 'Loaded' into memory.

In case 2 the user will load only the impure parts of the procedure
(such as IFTNLB) into segment '4000 and will place all link frames and
initialized COMMON in segment '4000.

In case 3 the external LOGIN program will load most of the user 's SEG
runfile (the portions residing above '4000) into memory at LOGIN time.
The user's specific applications, referencing the fixed portions above
and below '4000, will be loaded into segment '4000. This case requires
the user to create a 'template' of the fixed portion of the application
on top of which specific applications are loaded.

When the user's procedure is loaded with SEG's Loader, segment '4000 is
declared as a split segment using the Loader's SPLIT command, and
specifying only the location at which the segment is to be split. This
causes SEG's Loader to create a procedure area below the designated
location and a data link frame area above it. Then the R-mode
interlude RUNIT is automatically loaded into the procedure portion. At
run time, RUNIT will initialize the stack, and transfer control to the
user's routine, MAIN. The user may load other procedure and link-data
information into segment '4000 using the Loader's S/xx command.

The user must determine via a previous load where to split segment
'4000.

REV. 0 1 2 - 1 2

PDR3057 SHARED CODE

A slightly different load sequence from that given earlier in this
section:

OK, SEG
VL #BENCH
$ SP 4000
$ SY AA 4000 5000
$ SY BB 4002
$ SY AABB 4001
$ S/LO B^BENCH 0 4000 4000 difference
$ D/LI difference
$ SAVE
$ RE
$ SH
TWO CHARACTER FILE ID: BE
CREATING BE4000
QU
OK,

would load the program as non-shared procedure. The resulting R-mode
runfile BE4000 can be invoked with the PRIMOS command RESUME as
R BE4000 or it may be placed in the command UFD.

Finally, when the load is complete and saved, the user returns to SEG
via the REturn command and enters SH on the terminal. When all
appropriate segments have been turned into separate runfiles, the one
with the appended segment number 4000 may be run (suitably renamed if
desired) from PRIMOS command level either from CMDNC0 or by a PRIMOS
RESUME command.

12 - 13 November 1977

SECTION 12 PDR3057

Example:

Programmer has been assigned segment '2000 by the systems manager.

OK, SEG
VL JBENCH
$ SP 4000

$ SY AA 4000 5000

$ SY BB 4002
$ SY AABB 4001
$ SAO B^BENCH 0 2000 4000

$ D/PL

$ S/IL 0 4000 4000
$ SAVE
$ RE
$ SH
TWO CHARACTER FILE ID: BE
CREATING BE4000
CREATING BE2000
OJ
OK,

invoke SEG
establish runfile and access Loader
split segment '4000 at location '4000;
for impure FORTRAN library and data
locate AA in segment '4000 at location
'5000
locate BB in segment '4002
locate AABB in segment '4001
load the procedure portion of the user
program into segment '2000; load link
frames into '4000.
load the pure FORTRAN library with the
same parameters
load impure FORTRAN library
save the runfile
return to SEG command level
ask SEG to split out segments below '4001
SHARE asks for ID

return to PRIMOS command level

REV. 0 12 - 14

PDR3057 SHARED CODE

INCORPORATING FILES INTO SHARED SEGMENTS

Using SEG's SHARE command creates one R-mode runfile for each segment
of the SEG runfile below segment '4001. The R-mode runfiles for
segments below '4000 must actually be incorporated into those segments
using the PRIMOS SHARE command. This operation can only be performed
at the system operator's console. The command format is:

SHARE filename segno access-rights

filename is the name of the R-mode runfile to be incorporated
into the segment.

segno is the segment number to be shared.

access-rights are the access rights assigned to this segment.

access-rights permitted operations

0 none
200 read
600 read and execute
700 read, write, and execute

If no value is specified, the default is '600.

Segments '1 to '12 and '2000 to '2037 is the current range of sharable
segments; specification of segments other than these will give
unpredictable results.

WARNING

Since PRIMOS IV resides in segments '1 to '12 users
should not create files which need to be
incorporated into these segments.

The PRIMOS command OPR 1 must preceed SHARE commands; OPR 0 must
follow the last SHARE command.

Example:

OK, OPR 1
OK, SHARE BE2000 2000
OK, OPR 0 default access

The program BENCH can now be executed from the user's UFD by the
command R BE4000 (the name of the R-mode runfile BE4000 may be changed
if desired using the CNAME command)

CNAME BE4000 BENCH

The R-mode image of segment '4000 may also be put into the command UFD

12 - 15 November 1977

SECTION 12 PDR3057

and invoked as a command.

OK, FUTIL
>T0 CMDNCO
>COPY BE4000 BENCH

>QU
OK,

invoke FUTIL
define TO UPD
copy BE4000 into UFD=CMDNC0
under the name BENCH
return to PRIMOS

It was not necessary to specify the FROM UFD; the default is the
current UFD.
the default is the current UFD.

COMMON BLOCKS OVER 64K WORDS LONG

The size of COMMON blocks and the arrays within them are limited only
by the operating system. Either 15 or 31 segments of 64K words are
available to the user depending upon the version of SEG implemented on
the specific system. The size of a 64V mode program includes COMMON
blocks and the procedure, linkage and stack frames of the main program,
subprograms and required library routines.

Usage

No special syntax is needed to create a COMMON block over 64K;
any named COMMON or blank COMMON may be over 64K. The only indication
that a COMMON is over 64K is in the concordance. The concordance
address field for all items in an over 64K COMMON block contains two
6-digit octal numbers rather than one. The first number corresponds to
a segment offset; the second number is the word offset.

Any array in a COMMON block over 64K is treated as an array that spans
a segment boundary regardless of size of the array. Code normally
generated for array references will not work for these areas. The
program (and subprograms) must be compiled with the BIG option. (This
also forces compilation in 64V mode).

A COMMON block over 64K must be explicitly declared over 64K in every
program that references the COMMON. Otherwise, the compiler will not
generate special code for arrays within that COMMON block.

Dummy Argument Arrays

If a dummy argument array may become associated with an array that
spans a segment boundary (through a CALL statement or function
reference), the compiler must be made aware of this when the subroutine
or function is compiled.

REV. 0 1 2 - 1 6

PDR3057 SHARED CODE

Example:

COMMON IBUF (1000,200)
CALL SUB (IBUF, 1000, 200)

END
SUBROUTINE SUB (IDUM, N, M)
DIMENSION IDUM (N, M)

END

When subroutine SUB is being compiled, the compiler must be notified
that dummy argument array IDUM becomes associated with an array that
spans a segment boundary (IBUF).

Note that code generated for an array that spans a segment boundary
will work whether or not the array actually spans a segment boundary.
There are two methods to notify the compiler that a dummy argument
array may become associated with an array that spans a segment
boundary:

1. Within the subroutine or function, dimension the dummy argument
array over 64K words.

Example:

SUBROUTINE S(IARRAY)
DIMENSION IARRAY (100000)

Note that this method cannot be used when there are dummy arguments or
COMMON dimensions.

2. Compile the subprogram with the BIG option. All dummy argument
arrays will be treated as arrays spanning segment boundaries.

Example: FTN SUB -BIG

BIG also forces compilation in 64V mode.

The above discussion relates only to dummy argument arrays. A dummy
argument variable may become associated with an element of an over
segment boundary array, and the code normally generated by the compiler
will work correctly.

System and Library routines that require arrays as arguments must not
be called with arrays that span segment boundaries, unless these
routines are recompiled with the BIG option. This includes the matrix

12 - 17 November 1977

SECTION 12 PDR3057

manipulation routines in MATHLB.

Restrictions

There are a number of restrictions on over 64K COMMON blocks and
segment boundary spanning arrays. The compiler will issue an error
message if any of these restrictions are violated.

Although an array may span segment boundaries, no array element or
variable may cross a segment boundary. If the first word of a real
number is in one segment, the second word must be in the same segment.
For this reason, the compiler must enforce the following restriction:

Any multiword variable or array of multiword elements must be
offset a multiple of its element length from the start of the
COMMON block.

Thus, a double-precision variable or array (regardless of its
dimension) must be offset 0 or 4 or 8 words, etc. from the start of an
over 64K COMMON block. This restriction also applies to items
EQUIVALENCEd to elements in an over 64K COMMON block.

Items in COMMON blocks over 64K cannot be initialized by a DATA
statement. Any initialization of COMMON blocks over 64K must be done
by assignment statements. This restriction applies even if the item is
in the first segment of an over 64K COMMON block.

A segment boundary spanning array must not appear unsubscripted in the
list of an I/O or ENCODE/DECODE statement. The equivalent
functionality can be achieved by using implied DO Loops.

Implementation Notes and Programming Considerations

The code generated for a subscripted array reference normally consists
of instructions to load an index register with the subscript followed
by an indexed instruction that references the array element. This code
sequence cannot be used for a segment boundary spanning array reference
because the index registers are only 16 bits wide and indexing never
affects the segment number. A segment boundary spanning array
subscript is computed using 32 bit integer arithmetic and then added to
the array base address. This resultant address is stored in a
temporary location and the array element is referenced indirectly
through the temporary location. Thus, on every reference to an over
segment boundary array, an execution speed and program size penalty is
paid relative to a normal array. For efficiency, all arrays under 64K
words should be placed in COMMON blocks under 64K.

The compiler requires that any COMMON block over 64K be allocated in
contiguous segments. It also requires that starting address to be a
multiple of 4, the largest data type size (complex and double precision
floating point).

REV. 0 1 2 - 1 8

PQR3057 SHARED CODE

Calculating Array Size in Words

The size of an array is the product of its dimensions multiplied by the
number of words per element. The number of words per element is
determined by the type of the arrays as follows:

Type Number of Words Per Item

INTEGER*2
LOGICAL
INTEGER*4
REAL (REAL*4)
COMPLEX
DOUBLE PRECISION (REAL*8)

1
1
2
2
4
4

Example: REAL A(1000,44)

Number of Words = 1000x44x2=88000

EXTENSION STACK SEGMENTS

FORTRAN programs using the DYNM parameter for automatic storage of
local arrays in the stack may require extension stack segments to
prevent overflow. Extension stacks are supported by the SK command in
the Modification sub-processor and by the SPLIT command in the SEG
Loader. If no extension parameters are supplied SK and SPLIT will
operate as previously described.

In specifying extension stack segments the user supplies the first
available free segment; SEG then allocates additional extension stack
segments sequentially as needed. If an allocated segment is not needed
for an extension it is not assigned to the runfile.

12 - 19 November 1977

SECTION 12 PDR3057

SK ssize 0 segno

ssize is the size of the stack to be allocated.

segno is the first segment available for the extension stack.

This form of the command is used to establish a larger stack size in a
segment with the extension stack in a segment of the user's choice.

Example:
SK 100000 0 4005

allocates a primary stack segment in the first convenient segment with
'100000 free locations and the extension stack to begin in segment
'4005. If the ssize parameter is 0, then the default stack size of
'6000 will be used.

SK ssegno addr segno

ssegno is the segment in which the stack begins

addr is the beginning stack address in ssegno

segno is the first segment available for the extension stack

Example:

SK 4001 170000 4005

Sets the initial stack frame to location '170000 in segment '4001. The
extension stack frame (if needed) will begin in '4005 followed by
'4006, etc. (if needed).

Note

At least 12 words ('15) must be available in the
primary stack segment.

REV. 0 1 2 - 2 0

PDR3057
INTERFACES

SECTION 13

INTERFACE TO OTHER SYSTEMS
AND LANGUAGES

INTRODUCTION

This section discusses interfaces of the FORTRAN language to the following
Prime systems:

• Multiple Index Data Access System (MIDAS)

• Database Management System (DBMS)

• Forms Management System (FORMS)

• Other Programming Languages (COBOL, PMA)

MULTIPLE INDEX DATA ACCESS SYSTEM (MIDAS)

Introduction

MIDAS is a system of interactive utilities and high-level subroutines enabl­
ing the use of index-sequential and direct-access data files at the applica­
tion level. Handling of indices, keys, pointers, and the rest of the file
infra-structure is performed automatically for the user by MIDAS. Major
advantages of MIDAS are:

• Large data files may be constructed

• Efficient search techniques

• Rapid data access

• Compatibility with existing Prime file structures

• Ease of building files

• Primary key and up to 19 secondary keys possible

• Multiple user access to files

• Data entry lockout protection

• Restructuring utility (REMAKE) for file changes and optimization

• File repair utility (REPAIR)

• Partial/full file deletion utility (KIDDEL)

1 3 - 1 November 1977

SECTION 13 PDR3057

This section introduces the programmer to the major concepts and usage of
MIDAS. Sufficient information is presented to allow the programmer to
determine if MIDAS would be applicable to specific situations.

Note

This section does not contain all the information neces­
sary to implement a MIDAS application. The extensive
features of MIDAS and the actual implementation and
usage are described in detail in REFERENCE GUIDE, MULTI­
PLE INDEX DATA ACCESS SYSTEM (MIDAS), PDR3061.

Requirements

The MIDAS system requires that UFD=LIB contain the KIDAFM library, the
KIDALB library (for non-segmented addressing use) and the VKDALB library
(for segmented-addressing use). The library is loaded just prior to load­
ing the FORTRAN library when loading programs. The files PARM.K and
OFFCOM, which contain mnemonics for flags and keys used in MIDAS subrou­
tines, must be located in UFD=SYSCOM.

Using MIDAS

MIDAS usage is implemented in four major steps through PRIME-supplied
interactive utilities (see Fig. 13-1).

• Creating/modifying the template - the user defines the data
sub-file, indices, etc. (CREATK)

• Building the data sub-file - data existing in a text or
binary file are converted to a MIDAS file. (KBUILD)

• Maintaining the file - data entries are added, deleted,
changed, or viewed at the application program level, using
MIDAS data access subroutines.

• Performing housekeeping - files are restructured after
significant maintenance (REMAKE), deleted in part or full
(KIDDEL), or rebuilt after crashes, (REPAIR)

Maintenance of the file may be done by more than one user simultaneously.
A lockout subroutine protects data entries from attempts at simultaneous
changes/deletions. All other operations require the user to have exclu­
sive access to the MIDAS file.

Creating and Modifying Template

The interactive program CREATK allows the user to build, examine, and modify
a MIDAS template file. This template contains the information the MIDAS
programs and subroutines require to build and maintain the data sub-file
and its associated index sub-file(s) and directories.

REV. 0 13-2

BUILD FILE
TEMPLATE

WITH CREATK

REBUILD
BROKEN FILES

WITH REPAIR

YES l_.

MODIFY FILE
TEMPLATE

PARAMETERS
WITH CREATK

YES

REBUILD
INDEXES, ETC.
WITH REMAKE

BUILD DATA
FILE WITH

USER PROGRAM

PRIBLD
SECBLD
BILD$R

vNO

IS
INPUT

FILE STRUCTURED;
FOR KBUILD

?

YES BUILD DATA
FILE USING

KBUILD

YES

DELETE MIDAS
FILE WITH

KIDDEL

YES

(EXIT TO "N
PRIMPS J

KEY:

PRIME-SUPPLIED
PROGRAM

MAINTAIN
FILE

ADD
RECORD

BILD$R
ADDI$

USER-SUPPLIED
PROGRAM

PRIME-SUPPLIED
SUBROUTINES

DELETE
RECORD

DELET$

CHANGE/
UPDATE
RECORD

UPDAT$
(LOCK$)

s:

INQUIRE/
RETRIEVE

RECORD

FIND$
NEXT*

(LOCKS)

RECORD (E xiT TO N
" F I N D S " " V PRIMPS J

Ficfure 13-1 . User 's Functional Overview of the MIDAS F i l e System

13-3 Noveirber 1977

SECTION 13 PDR3057

When constructing the template, the user specifies filename, direct access
support (if supplied), block length, and index requirements (both primary
index and secondary indices, if any). For many parameters, the system
will supply default values in lieu of the user's specifications if so
desired. Secondary indices allow duplicate keys; the primary index key-
data record association must be unique. A long index subfile requires the
space for two default secondary index subfiles.

If there are no data files to be converted to the MIDAS format, the user
may begin file maintenance (addition, updating, deletions) at this point.

The CREATK program can also be used to examine and reset the template
parameters for an existing file. The REMAKE program is then invoked to
modify the index sub-files and directories. Certain restrictions exist in
modifying parameters, especially in converting to long indices.

An example of the template creation dialogue is shown in Figure 13-2.

Building the Data Sub-file

The MIDAS data file may be constructed with the Prime-supplied program
KBUIID, or the user may write a file creation program (with the appropri­
ate Prime-supplied subroutines BILD$R, PRIBLD, SECBID) . The use of KBUIID
is simpler but it places certain restrictions on the input data files and
the resulting output MIDAS data sub-file.

KBUIID Program; KBUIID may be used to generate or add data to MIDAS files;
it cannot alter data in existing files. KBUIID expects the input data
files to be sequential, fixed-record-length disk files.

Input data files may be text (created by FORTRAN WRITE statements or the
text editor) or binary (created by disk I/O subroutines).

During its processing KBUIID prints (to the user's terminal and to a file)
non-fatal error messages and milestones. The rate at which milestones are
printed is user-specified; milestone information is: records processed,
run time, CPU time, disk time, total time, and time used since last the
milestone repart. Milestone reports are also generated at the start and
end of file processing.

The MIDAS file created by KBUIID has fixed-length records. The user may
alter these to variable-length data records by the user of CREATK and REMAKE.
The MIDAS file created by KBUIID has completely sorted indexes with no
entries in the index overflow areas.

Sample KBUIID dialog:

Suppose the file is sorted on the primary key only, that there is one input
file containing 10100 entries called FILE01 in the current UFD, and that
the output file is a MIDAS template file called CUSTFIL.KIDA which is on a
new partition UFD called NEWPAR. The error file ERRFIL.KIDA will also be
written to this UFD.

REV. 0 13-4

PDR3057 INTERFACES

OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? POLITC
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : * 2
DATA SIZE = : 40

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A
KEY SIZE = : & 1
USER DATA SIZE = : 20

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A
KEY SIZE = : g 2
USER DATA SIZE = : 40

INDEX NO.? .RETURN.

OK,

invoke CREATK

creating a new file

ASCII key
2-word key length
40 words (80 characters)

RETURN indicates no more
indices

Figure 13-2. Sample of CREATK Dialogue

1 3 - 5 November 1977

SECTION 13 PDR3057

SECONDARIES ONLY? NO
ENTER INPUT FILE NAME: FILE01
ENTER INPUT RECORD LENGTH(WDRDS): 63
INPUT FILE TYPE: B
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILE NAME: NEWPAR>CUSTFIL.KIDA
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 51
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION; 61
SECONDARY KEY NUMBER: 3
ENTER STARTING CHARACTER POSITION: 1
IS FILE SORTED? (CR)
IS THE PRIMARY KEY SORTED? (OR)
ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
NUMBER OF RECORDS IN INPUT FILE: lOlOO
ENTER LOG/ERROR FILE NAME: NEWPAR>ERRFIL.KIDA
ENTER MILESTONE COUNT: (CR=0),

User File-Building Program: If the input data file(s) is not in the format
expected by KBUILD, the user must write a program to create the MIDAS file.
Before building the data file the user must first create a template using
CREATK. Three major subroutines (BILD$R, PRIBLD, and SECBLD) are supplied
to assist the programmer.

If the input file is unsorted or if the user wishes to add data to an exist­
ing file, the subroutine BILD$R should be used. BILD$R adds all entries in
the index overflow area and periodically merges and reorganizes the index
files. It passes through the file once. It may be used with PRIBLD and
SECBLD concurrently.

PRIBLD assumes that the input file data is sorted on the primary key: it
is much faster than BILD$R when the input file is about 2000 records or
greater.

If the input file is sorted on any secondary keys SECBLD may be used to
create those secondary indices files.

Maintaining and Using the File

A number of subroutines are supplied to enable the programmer to make effec­
tive use of the MIDAS file. These subroutines are designed to allow more
than one user to access the data fils simultaneously. All the subroutines
require the file PARM.K be inserted in the user program with:

$INSERT SYSCOM>PARM.K

ADDl$ - adds a data entry to the file and modifies the index sub-files
appropriately. Insertion is by primary key only; the file is
locked during insertion.

DELET$ - deletes a data entry and modifies the index sub-file(s) accord­
ingly. Deletion may not occur if the data entry is locked.

REV. 0 1 3 - 6

PDR3057 INTERFACES

FIND$ - locates a data entry and reads its contents into a buffer.
Look-up is by primary and secondary key(s) . If there exist
data entries with the same secondary key (synonyms) the old­
est data entry (i.e., first one in the file) is retrieved.

NEXT$ - retrieves the data entry with the next higher key. Search
may be on primary or secondary keys. This subroutine allows
synonyms which are not oldest to be accessed.

LOCK? - locates a data entry and, if not locked, then locks the data
entry. The data entry is unlocked by a successful call to
UPDAT$, FIND$, or NEXT$.

UPDAT$ - re-writes a data entry. This subroutine should not be called
before a successful call to LOCK$.

An example of a subroutine using NEXT$, LOCK$, and UPDAT$ is shown in
Figure 13-3. The $INSERT file KIDINS is one the applications programmer
has created to facilitate communication between the main program and
various subroutines. In the example, the user would probably check the
error return from LOCK$ to see if the record was already locked. If this
is the case, it would be appropriate to recycle a few times until the
record is unlocked and then proceed with the update.

Performing Housekeeping

REMAKE Program; This program can perform four levels of restructuring:

• Restructure selected secondary indices

• Restructure all indices

• Restructure all indices and data sub-file

• Rewrite file into new file with new template

The programmer should run REMAKE after substantial numbers of data entries
have been added to or deleted from the file. This restructuring clears out
the index overflow areas (which are searched more slowly than the ordered
indices) and frees for use the space occupied by data entries flagged as
deleted.

KIDDEL Program: This program will delete all or part of the MIDAS file;
the PRIMOS DELETE command should not be used. KIDDEL allows deletion of:

• Selected secondary indices

• Unwanted segments at the end of the data sub-file

• The entire file

13-7 November 1977

SECTION 13 PDR3057

Updating a Data Record - NEXT$, LOCK$ and UPDAT$

The principle here is that NEXT$ is called until the correct record is
found, then this is LOCK$ed and UPDAT$ed.

SUBROUTINE UPDATH(,ALTRTN,
C

LOGICAL VERIFY, AYENAY
INTEGER FLAGS, ALTRTN
DOUBLE PRECISION PAY

$INSERT KIDINS
C

C
C SET FLAGS TO USE AND RETURN ARRAY, RETURN PRIMARY
C KEY IN BUFFER AND STOP SEARCHING ONLY WHEN
C TERMINATED BY USER.
C

FLAGS-FL$RET+FL$USE+FL$PLW+FL$KEY
ARRAY(1)=-1 /*FLAG NEXT$ TO IGNORE ARRAY

C
C DATA WILL BE READ INTO DBUFFR
C SEARCH WILL BE DONE ON SKEYl
C USING INDEX 1
C FILE# IS 0, AS USUAL - FIRST 0
C PLNGTH IS 0 - RETURN FULL RECORD - 2ND 0
C KEYLNT IS 0 - USE FULL KEY - 3RD 0
C
100 CALL NEXT$(1,DBUFFR,SKEYl,ARRAY,FLAGS,$9000,1,0,0,0

IF(.VERIFY (.).) GO TO 1000
C
C AYENAY IS A FUNCTION REQUESTING A YES/NO RESPONSE FOR THE

MESSAGE INDICATED
C

IF (.AYENAY ('NEXT? ',6).) GOTO 100
GO TO ALTRTN

C
C CALL LOCK$ USING SAME PARAMS
C
1000 CALL L0CK$(1,DBUFFR,SKEY1,ARRAY, FLAGS,$9000,1,0,0,0)

BALANC=BALANC+PAY
C
C CALL UPDAT$ USING SAME PARAMS TOO
C

CALL UPDAT$(1,DBUFFR,SKEYl,ARRAY,FLAGS,$9100,1,0,0,0)
RETURN

Figure 13-3. Example of Data Maintenance Program.

REV. 0 13-8

PDR3057 INTERFACES

REPAIR Program: If a file is damaged by a system or program crash, most
of the usable data may be recovered with the REPAIR program. Data entries
which are still valid but which cannot be accessed by MIDAS are recovered;
data that were overwritten, deleted, or truncated obviously cannot be re­
trieved. The user first builds a new template identical to the original
(as the old one may have been damaged) . REPAIR then builds a new MIDAS
file using the new template and what exists of the old file. Sufficient
space must be available to write the new file.

Messages are printed at the user terminal and in a file. Problems encoun­
tered in rebuilding the file (bad data, no index entry, etc.) are also
printed with the context in which they were found as an aid to the user.

DATABASE MANAGEMENT SYSTEM (DBMS)

FORTRAN/DBMS Interface

The FORTRAN interface to the DBMS includes two major processors and their
respective languages: the FORTRAN Subschema Data Definition^ Language (DDL)
Compiler and the FORTRAN Data Manipulation Language (DML) Preprocessor.

The application programmer's 'view- of a schema is written in the FORTRAN
Subschema DDL. The Subschema Compiler translates the DDL into an internal,
tabular form called the subschema table which is used by the DML Preproces­
sor.

Commands for locating, retrieving, deleting, and modifying the contents of
a database are written in the FORTRAN DML. These commands are interspersed
with FORTRAN^tatements in the application source program and translated
into OWfcL^eclarations and statements by the FORTRAN DML Preprocessor.
The output of the Preprocessor is the source input for the QODQL Compiler.

See: PRIME COMPUTER REFERENCE GUIDE FOR DBMS SCHEMA DATA DEFINITION
LANGUAGE (DDL), IDR3044.

FORTRAN REFERENCE MANUAL FOR DBMS, IDR3045.

FORMS MANAGEMENT SYSTEM (FORMS)

The Prime Forms Management System (FORMS) provides a convenient and natural
method of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications program
which uses Prime's Input-Output Control System (IOCS) , including programs
written in FORTRAN. Applications programs communicate with FORMS through
input/output statements native to the host language. Programs that currently
run in an interactive mode can easily be converted to use FORMS.

1 3 - 9 November 1977

SECTION 13 PDR3057

FORMS allows cataloging and maintenance of form definitions available within
the computer system. To facilitate use within an applications program, all
form definitions reside within a centralized directory in the system. This
directory, under control of the system administrator, may be easily changed,
allowing the addition, modification, or deletion of form definitions.

FORMS is device independent. If certain basic criteria are met, any mix of
terminals attached to the Prime computer may be used with the FORMS system.
Terminal configuration is governed by a control file in the centralized
FORMS directory. This file is read by FORMS at run-time to determine which
device driver to use, depending on this user's terminal type. This means
that multiple terminal types may be driven by the same applications program
without change. Certain terminal types are supported by FORMS as released
by Prime. Should the user have another terminal capable of supporting FORMS,
all that need be done is to write a low-level device driver for the terminal
and incorporate it into the FORMS run-time library.

See: PRIME FORMS MANAGEMENT SYSTEM (FORMS), IDR3040

OTHER LANGUAGES

COBOL Programs

FORTRAN subroutines may be called by COBOL programs; the responsibility for
proper coding is at the COBOL program level.

See: THE COBOL PROGRAMMER'S GUIDE, PDR3056

PMA Programs

FORTRAN subroutines may be called by PMA programs; proper instructions must
be placed in the calling program by the PMA programmer. FORTRAN programs
may call subroutines written in PMA. The FORTRAN programmer must ascertain
the subroutine name, the calling sequence and the data modes of the subrou­
tine arguments.

See: THE PMA PROGRAMMER'S GUIDE, PDR3059

REV. 0 13-10

PDR3057 OPTIMIZATION

SECTION 14

OPTIMIZATION AND
OTHER HELPFUL HINTS

This section is reserved for specific techniques which users have found to
be useful. It is intended that this section will serve as feedback for
users of this manual.

1 4 - 1 November 1977

P A R T IV

F O R T R A N L A N G U A G E R E F E R E N C E

PDR3057 LANGUAGE ELEMENTS

SECTION 15

FORTRAN LANGUAGE ELEMENTS

LEGAL CHARACTER SET

The characters allowed in Prime FORTRAN IV are:

a. The 26 letters: A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,
T,U,V,W,X,Y,Z

b. The 10 digits: 0,1,2,3,4,5,6,7,8,9

Letters and digits together are called alphanumeric characters.

c. These 12 special characters:

= equals
1 single quote (apostrophe)
: colon
+ plus
- minus
* asterisk
/ slash
(left parenthesis
) right parenthesis
, comma
. decimal point
$ dollar sign

d. Blanks or spaces (which will be represented as b in text, when
necessary).

Blanks in Hollerith constants (character strings) or in formatted input/
output statements are treated as character positions. Elsewhere in
Prime FORTRAN, blanks have no meaning and should be used as desired to
improve program legibility.

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character
position in the line is called a column, numbered from left to right
starting with 1. There are three types of lines: Comments, state­
ments (and their continuations), and control statements. (See Figure
15-1.)

!5 - 1 November 1977

SECTION 15 PDR3057

Comment

Statement

Continuation

Control

column number
12 567 72 73 80

C comment text
11

aaaaay^F-

! I;
bbbbbz*-
• 11
' H
$' Control •*-

1 I r I

-statement-

-statement continuation-

Sequence number

aaaaa - Statement label (optional)
bbbbb - Blanks

y - Blank or zero
z - Any character except blank or zero

NOTE : Comments may be extended past column 72 to column 80.

Figure 15-1. Program Line Format

REV. 0
1 5 - 2

PDR3057 LANGUAGE ELEMENTS

Comments

Comment lines are identified by the letter C in column 1. The remain­
der of the line may contain anything. A comment line is ignored by the
compiler, except that it is printed in the program listing. A comment
may be placed on a statement line (except inside a Hollerith constant)
using the format:

/* comment */

Statements

Columns 1-5 are reserved for the numerical statement label, if any.
(Blanks and leading zeros are ignored.) Column 6 must be a blank or a
zero. Columns 7-72 contain the statement. The statement may begin
with leading blanks; this is often done to make the program easier to
read, as for indention of nested DO loops or nested IF statements. In
the continuation of a statement, columns 1-5 must be blank, column 6
may be any character EXCEPT 0 (zero) or a blank, and the statement
continuation is in columns 7-72.

Control

Column 1 must contain the special character $. Other columns are spe­
cified by the individual control operation. (See, for example, $ INSERT
in Section 16.)

Columns 73 to 80 are available for line order sequence numbers or other
identification (usage is optional) . These columns, like comments, are
ignored by the compiler except that they are printed in the program
listing.

OPERANDS

Operands are those elements which are manipulated by the program. They
are constants, parameters, variables, arrays, and address constants.

Constants

Constants may be any of the following types:

Range

-32768 to +32767

-2147483648 to +2147463647
(-2**31 to +2**31-1)

±(l0**-38 to 10**38)

±(10**-9902 to 10**9825)

as for real

0 or 1 (i.e., .FALSE, or .TRUE.)

1 5 - 3 November 1977

Mode

INTEGER (short)

INTEGER (long)

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

Memory Words

1

2

2

4

2x2

1

SECTION 15 PDR3057

Integers: May be decimal or octal numbers. In either case, no decimal
point appears in the representation. Short integers may have up to 5
decimal digits or 6 octal digits, plus a sign, within the magnitude
range.

decimal 12345 or -23579

octal: :13752 or -:156

or

5013752 or -30156

(obsolete notation - supported for compatibility;
use is not recommended)

Short integers range in magnitude from 0 to 32767 (decimal); i.e., :0
to :177777 (octal).

Long integers may have up to 10 decimal digits or 11 octal digits plus
a sign, o ft. 2 / ^ 7 ^ 3^-7

The representation is the same as short integers. Long integers range
in magnitude from 0 to 2147483647 (2**31-1); :000000 to :17777777777

(octal) ̂ wd prv^ - Z / f W ^ 3 4 ^ (rzcococooooo)-h> -(6*3 ? ??7?7?7?^.=(-^z** 3(J

Integer constants are treated as short integers unless:

a. Their magnitude exceeds 32767 or :177777 (octal).

b. Their representation exceeds 5 decimal digits or 6 octal digits;
leading zeros are counted in determining the number of digits
in the constant.

Example:

30 short integer

000030 long integer

If the program is compiled with INTL then all integer constants are
treated as long integers. (See Sections 4 and 18 for details.)

Long integers may be used in the FORTRAN program anywhere that short
integers are used. This included subscripts, ASSIGNed GOTOs, computed
GOTOs, FORTRAN I/O unit numbers, DO-loop index values, and character
counts.

CAUTION

Some subroutines expect short integers as
arguments. In these cases, convert any long
integers to short integers via the INTS
function (see Section 20 for details) .

REV. 0 1 5 - 4

PDR3057 LANGUAGE ELEMENTS

Real Numbers: may be written as

1357.924

or

0.3579 E 02

The decimal point is mandatory in the first case. In the exponential
form the decimal point is optional; the exponent ranges from -38 to
+38. The position following the E must contain a blank, a plus sign,
or a minus sign. The blank is interpreted as a plus sign.

Only the seven most significant digits are retained.

Double Precision Numbers: are similar to real numbers except that four­
teen significant digits are retained, and the exponential (or floating
point) representation uses D in place of E, e.g.,

12345.9253 D-ll

The exponent (following D) may take on values from -9902 to +9825.

Complex Numbers: are an ordered pair of two real numbers enclosed in
parentheses and separated by a comma:

(REALl, REAL2) e.g., (1.345, 0.59 E-2)

The rules for real number representation apply to each element of the
complex number.

Logical Constants: Logical constants have only two possible values:

0 (zero) corresponding to .FALSE.

1 (one) corresponding to .TRUE.

ASCII: ASCII constants are character strings. They are stored as follows:

Maximum Number of
Mode ASCII Characters Stored

Integer, short 2
Integer, long 4
Real 4
Double Precision 8
Complex 8

When character strings are compared, bit-by-bit checking is only done
for those stored in integers; hence storage in modes other than integer
(long or short) should be avoided.

Characters are left justified and the remainder of the word(s) are
packed with blanks.

-jc _ c November 1977

SECTION 15 PDR3057

ASCII constants are represented in either of two ways:

1. A character count followed by the letter H and the string:

23HTHISbISbANbASCIIbSTRING

2. The string enclosed in single quotes:

1THISblSbANbASCIIbSTRING'

A single quote may be represented in a string by using two single
quotes ('') (NOT a double quote) . This will count as one character.

Example:

WRITE (1,1)
1 FORMAT ('AB' 'C')

will print AB'C at the terminal.

Parameters

Parameters are named constants and may be of any data mode. They may
be used in the program anywhere a constant can be used, except in
FORMAT statements; they may also appear in DATA and DIMENSION state­
ments. Parameters are loaded at compile time, and the code generated
for them is identical to that generated for constants (see the
PARAMETER statement in Section 16) .

Variables

Variable names have from 1 to 6 characters. Character 1 must be alpha­
betic; characters 2-5 (if any) must be alphanumeric.

If no modes are specifically declared, then all variables whose names
begin with the letters I,J,K,L,M,N, are integer mode, and variables
whose names begin with A-H, or 0-Z are real mode. Check Section 16,
Specification Statements, for instructions on how to override this
implicit convention and also specify double precision, complex and
logical modes.

Arrays

Arrays are ordered multidimensional sets of data represented as:

ANAME (I1,I2,...,In) .

The I's are the indexes (subscripts) of the array, and must be posi­
tive integers (constants, parameters, or variables). All elements of
the array must be of the same mode—integer (short or long) , real,
double precision, complex, or logical.

REV. 0 1 5 - 6

PDR3057 LANGUAGE ELEMENTS

CAUTION

If a variable expression is used for an index,
its form may be no more complicated than:

(constant) * (integer variable) ± (constant) .

No more than seven subscripts may be used to
index an array.

Address Constants

Address constants consist of a statement label prefixed by a dollar sign
($). They contain the memory address of the first line of code gener­
ated by the statement label whose value is that of the address constant.

Example:

100 A=B*C is a statement in the program. Then $100 is the address of
the code generated by that statement. The address constant is an
integer value. It is usually used in conjunction with the ALTRTN from
external subroutines (these are alternate returns generated by encoun­
tering errors in executing the subroutines).

OPERATORS

Operators modify an operand or concatenate two operands.

Logical Operators

FORTRAN'S logical operators are: .NOT., .AND., .OR. (in this section,
P and Q have been specified as logical variables.

.NOT.: .NOT.Q negates the value of Q

Q

.TRUE.

.FALSE.

.NOT. Q

.FALSE.

.TRUE.

.AND.: P .AND. Q is the logical ANDing of the bits of P and Q (set
intersection)

\ p

.TRUE.

.FALSE.

.TRUE.

.TRUE.

.FALSE.

.FALSE.

.FALSE.

.FALSE.

1 5 - 7 November 1977

SECTION 15 PDR3057

.OR.: P .OR. Q is the logical non-exclusive ORing of P and Q.
union)

(set

N. P

.TRUE.

.FALSE.

.TRUE

.TRUE.

.TRUE.

.FALSE.

.TRUE.

.FALSE.

Arithmetic Operators

**

-
*

/
+
-
=

Relational

.LT.

.LE.
• EQ.
.NE.
.GT.
• GE.

Operators

Operator Priority

Exponentiation
Unary minus
Multiplication
Division
Addition
Subtraction
Equality or replacement

Less than
Less than or equal to
Equal to
Not equal to
Greater than
Greater than or equal to

FORTRAN evaluates operators within expressions in the following order:

**

* or /
+ or -

Exponentiation
Unary Minus
Multiplication or division
Addition or subtraction

•LT., .LE.f .EQ.,
.NE.,.GT.,.GE.

Relational operators

.NOT.

.AND.

.OR.

Logical negation
Logical intersection
Logical union

At equal level of operators, priority evaluation proceeds from left to
right. Expressions within parentheses are evaluated before operations
outside the parentheses are performed.

REV. 0 1 5 - 8

PDR3057 LANGUAGE ELEMENTS

PROGRAM COMPOSITION

Each program (or subroutine or external function) consists of a number
of program lines. Program lines are grouped and ordered by type of
statement as shown in Figure 15-2. Comments and TRACE and LIST control
statements can be used anywhere in the program. The END statement
must be the last statement of a program; nothing may follow END except
FUNCTION or SUBROUTINE of another subprogram. The types of statements
are discussed in Section 16.

1 5 _ o November 1977

SECTION 15 PDR3057

Header statement, if required:

FUNCTION, SUBROUTINE, BLOCK DATA

Storage and Specification Statements:

COMMON, DIMENSION, EQUIVALENCE, SAVE, EXTERNAL, COMPLEX, DOUBLE
PRECISION, INTEGER, INTEGER*2, INTEGER*4, LOGICAL, REAL, REAL*4,
REAL*8, IMPLICIT, PARAMETER

DATA Statements

Function Definitions

Executable Statements

Arithmetic and logical assignments

Control Statements: GOTO, ASSIGN, IF, DO, CONTINUE, PAUSE,
STOP, RETURN

Input/Output Statements: READ, WRITE, PRINT, FORMAT, REWIND,
BACKSPACE, END FILE

Subroutines: CALL subrname I(arg-1,... ,arg-̂)J

END Statement

Figure 15-2. Source Program Composition

REV. 0 15 - 10

PDR3057 FORTRAN STATEMENTS

SECTION 16

FORTRAN STATEMENTS

IMPLEMENTED STATEMENTS

Legal statements for Prime FORTRAN IV are listed below with their
functional category.

Statement

ASSIGN
BACKSPACE
BLOCK DATA
CALL
COMMON
COMPLEX
CONTINUE
DATA
DECODE
DIMENSION
DO
DOUBLE PRECISION
ENCODE
END
ENDFILE
EQUIVALENCE
EXTERNAL
FORMAT
FULL LIST
FUNCTION
GO TO
IF
IMPLICIT
INTEGER
INTEGER*2
INTEGER*4
LIST
LOGICAL
mode FUNCTION
NO LIST
PARAMETER
PAUSE
PRINT
PROTECTED FUNCTION
PROTECTED mode FUNCTION
PROTECTED SUBROUTINE
READ
REAL
REAL*4

Category

Control
Device Control
Header
External Procedure
Storage
Specif ication
Control
Data initialization
Coding
Storage
Control
Specification
Coding
Control
Device Control
Storage
External Procedure
Format
Ccmpilation/Run-Time Control
Header
Control
Control
Specification
Specification
Specification
Specification
Ccmpilation/Run-Time Control
Speci fication
Header
Ccmpilation/Run-Time Control
Specification
Control
Input/Output
Header
Header
Header
Input/Output
Specification
Specification

1 6 - 1 November 1977

SECTION 16 PDR3057

Statement (cont) Category (Cont)

REAL*8 Specification
RETURN Control
REWIND Device Control
SAVE Storage
STOP Control
SUBROUTINE Header
TRACE Ccmpilation/Run-Tirae Control
WRITE Input/Output
$INSERT Ccmpilation/Run-Time Control

In this reference, section statements are grouped in functional order
to clarify and simplify discussion, as follows:

Header Statements:

BLOCK DATA
FUNCTION
SUBROUTINE

Specification Statements:

IMPLICIT
mode: COMPLEX

DOUBLE PRECISION
INTEGER
INTEGER*2
INTEGER* 4

PARAMETER

LOGICAL
REAL
REAL* 4
REAL* 8

Storage Statements:

COMMON
DIMENSION
EQUIVALENCE
SAVE

External Statements:

CALL
EXTERNAL

Data Definition Statements:

DATA

16-2
REV. 0

PDR3057 FORTRAN STATEJVENT

Coipi la t ion and Run-Time Control Statements:

FULL LIST
LIST
NO LIST
TRACE
$INSERT

Assignment Statements:

Control Statements:

ASSIGN
CONTINUE
DO
END
GOTO
IF
PAUSE
RETURN
STOP

Input/Output Statements:

PRINT
READ
WRITE

Coding Statements:

DECODE
ENCODE

Format Statements:

FORMAT

Device Control Statements:

BACKSPACE
ENDFILE

REWIND

Functions

Subroutines

1 6 - 3 November 1977

SECTION 16 PDR3057

HEADER STATEMENTS FOR SUBPROGRAMS

BLOCK DATA Statement

BLOCK DATA

The BLOCK DATA statement labels a block data subprogram. This type of
subprogram labels COMMON areas and then initializes data values within
these areas via DATA statements. Block data subprograms are compiled
separately and linked to the main program by the Loader.

FUNCTION Statements

[PROTECTED] [mode] FUNCTION name (argument-1, argument-2, . .
argument-n)

The arguments are a non-empty list of the arguments passed by the calling
program. There is no syntactical upper limit to the number of arguments.
However, long lists will slow execution. The name - is both the name of
the function in the calling program and the variable that returns the
value calculated by the function. The mode - is an optional specification
of one of the data types, selected from the following list:

COMPLEX LOGICAL
INTEGER REAL*4 (REAL)
INTEGER*2 REAL*8 (double precision)
INTEGER* 4

If no mode is specified, FORTRAN will assign one implicitly based upon
the first letter of the function name (i.e., I-N=Integer, A-H or
0-Z=Real) .

CAUTION

Labelling a function or subroutine as PROTECTED prevents
it from being interrupted before it has completed its
calculations and returned to the calling program. This
is a system-level command enhancement and is not available
at the time-sharing user level. Inclusion of PROTECTED
in a program designed to run in the restricted (time
sharing) mode will generate a run-time error.

SUBROUTINE Statements

[PROTECTED] SUBROUTINE Name [argument-1,argument-2.. .argument-n]

The arguments are a list of arguments, some of which are passed by the
calling program. Others are dummy arguments whose values are calculated
by the subroutine and returned to the calling program. There is no
syntactical upper limit to the number of arguments. However, long lists
will slow execution.

HEV. 0 16 " 4

PDR3057 FORTRAN STATEMENTS

CAUTION

Under PRIMOS, subroutines are called by address (location)
rather than by name. Thus, it is extremely important not
to place constants or parameters in the argument list as
arguments which will be returned, since this will alter
their value. Also, returned arguments may not be expres­
sions .

Example:

1=5
PRINT 10,1
CALL SUB1(I,5)
1=5
PRINT 10,1

10 FORMAT (12)

prints on user terminal
5

25

SUBROUTINE SUBl
K=J**2
RETURN
END

(J,K)

See also the note for PROTECTED FUNCTION above.

SPECIFICATION STATEMENTS

FORTRAN automatically assigns modes to all variables, parameters, arrays,
and functions (except intrinsics) that do not appear in mode specification
statements. The FORTRAN language default is as follows: if the symbol's
first character is I through N (inclusive), the symbol is typed as integer;
all others (A-H, O-Z) are typed as real. (The default integers are short
integers unless the program is compiled with the long integer default -
see Section 4.

IMPLICIT Statements

IMPLICIT mode-1 (list-1), mode-2 (list-2),..., mode-n (list-n)

The IMPLICIT statement allows the programmer to override the language
convention for default data typing. Each mode is a data mode such as
REAL*4, COMPLEX, etc. Each list lists the letters to be typed as the
mode specification. Letters may be separated by a comma or an inclusive
group of letters may be indicated with a dash.

Symbols not typed in this statement and not specified in mode specifica­
tion statements will revert to the FORTRAN language default.

16 November 1977

SECTION 16 PDR3057

Example:

IMPLICIT DOUBLE PRECISION (A,M-Z) , LOGICAL (B)

First letter of symbol Type

A, or M through' Z Double Precision
B Logical
C through H Real
I through L Integer

If used, the IMPLICIT statement must be the first statement of a main
program, or the second statement of a subprogram. IMPLICIT typing does
not affect intrinsic or basic external functions. IMPLICIT affects all
symbols not otherwise typed. This includes dummy variables in the first
statenent of a subroutine or function. The user should take care to make
sure that these dummy variable symbols will be of the proper data type.

Mode Specification Statements

mode [Vl,V2,...,Vn]

The mode specification statement allows override of the implicit mode
assignments of symbol names which was done either by IMPLICIT or
language default.

The word mode is replaced by one of the nine data mode specifications:

COMPLEX
DOUBLE PRECISION (same as REAL*8)
INTEGER
INTEGER*2
INTEGER* 4
LOGICAL
REAL (same as REAL*4)
REAL*4 (same as REAL)
REAL*8 (same as DOUBLE PRECISION)

The V's are a list of variable names, parameter names, array names,
function names, or array declarers.

Recognition of synonymous specifications is designed to ease conversion
of extant programs to the Prime FORTRAN system. INTEGER will normally
default to INTEGER*2 (short integer) unless the program is compiled
including the INTL option. In this case, INTEGER will default to
INTEGER*4 (long integer). It is recommended in new programs that the
programmer explicitly use INTEGER*2 and INTEGER*4 specifications.
(See Section 4 for compiler information.)

Global mode definition occurs if a mode specification does not include
a symbol list. In this case, all symbols which do not appear in speci­
fication statements and whose first appearance follows this global mode
statement are declared to be of this globally-specified mode.

REV. 0 16 " 6

PDR3057 FORTRAN STATEMENTS

CAUTION

The use of global mode and the IMPLICIT statement in the same
program unit is prohibited. The global mode is functionally
replaced by the IMPLICIT statement. The use of the IMPLICIT
statement is strongly recommended as a superior prc>gramming
technique. The global mode is still supported by the FORTRAN
system to allow the use of existing programs utilizing it.

PARAMETER Statement

PARAMETER (V1=C1, V2=C2.,,,, Vh=Ch)

Where the V's are variables (arrays are not allowed) and the C's are con­
stants or constant expressions of the same mode as the corresponding vari­
ables. The operands in the constant expressions may be constants or pre­
viously defined parameters. Allowed operations include +, -, *, and / on
Integer*2/ Real*8, and Real*4 operands. Integer *2 XOR, OR, AND, MOD,
shift, and truncate function references are also allowed. An error message,
ILL. CONSTANT EXPR., is generated if these restrictions are violated. The
variable names must be typed explicitly prior to the PARAMETER statement
or default-typed implicitly. All other uses of the PARAMETER names must
follow the PARAMETER statement. PARAMETER names may be used wherever a
constant would be used (including DATA and DIMENSION statements) except
in FORMAT statements. Since the parameters are named constants, PARAMETER
names may not be used in COMMON or EQUIVALENCE statements.

Enclosing the parameter list in parentheses is required by the proposed
FORTRAN 77 standard. At Rev. 14, Prime's FORTRAN will accept a PARAMETER
statement with or without the parentheses.

STORAGE STATEMENTS

COMMON Statement

COMMON AVAl/.. ./Xn/An

Where each A is a non-empty list of variable names, array names, or array
characters (no dummy arguments) and each X is a COMMON block name or is
empty (blank COMMON). The COMMON block names must not be identical with
names of subprograms called or FORTRAN library subroutines. Data items
are assigned sequentially within a COMMON block in the order of appearance.
The loader program assigns all COMMON blocks with the same name to the
same area, regardless of the program or subprogram in which they are
defined. Blank COMMON data are assigned in such a way that they overlap
the loader program, thereby making the memory area occupied by the loader
program, available for data storage.

Note

The form // (with no characters except blanks between slashes)
may be used to denote blank COMMON.

1 6 - 7 November 1977

SECTION 16 PDR3057

The number of words that a COMMON block occupies depends on the number of
elements, the mode of the elements, and the interrelations between the
elements specified by an EQUIVALENCE statement. COMMON blocks that appear
with the same block name (or no name) in various programs or subprograms
of the same job are not required to have elements within the block agree
in name, mode, or order, but the blocks must agree in total words.

As an aid to system-level programming, the compiler defines absolute
memory location '00001 as the origin of a COMMON block named 'LIST'.

It is customary to assign an array called LIST into the labeled COMMON
area called LIST, such that the first word in this array is location
'00001, the sixth word location '00006, etc., as in:

COMMON/LIST/LIST (1)

Effectively^ the subscript of array LIST is the actual memory address.
This feature is not required when compiling in 64V mode.

Note

Techniques for handling COMMON areas larger than 64K words
(64V mode only) are discussed in Section 12.

DIMENSION Statement

DIMENSION VI(II), V2(I2),... VN(In)

Declares the name of the array, the number of subscripts (IJ=J1, J2,...
Jn n=l to 7) , and the maximum value for the subscripts. This allocates
the maximum storage requirement for the array. In a subroutine, the sub­
script (s) in a dimension statement may be a variable, provided this value
is passed to the subroutine from the calling program.

EQUIVALENCE Statement

EQUIVALENCE (kll, kl2, kl3...), (k21, k22, k23...)

Where each k is a variable, subscripted variable or array name. Each ele­
ment in the list is assigned the same memory storage by the compiler. An
EQUIVALENCE statement equates single variables to each other, entire arrays
to each other, elements of an array to single variables and vice-versa.
If equivalences are established between variables of different modes, the
shorter mode is stored in the first words of the longer mode.

SAVE Statement

SAVE VI, V2,..,, Vn

Where the V's are local variables or array names. Arrays cannot be dimen­
sioned in a SAVE statement. Any symbol name appearing in a SAVE statement
cannot appear in a COMMON statement or be EQUIVALENCEd to a COMMON element.
A labeled COMMON block (not blank COMMON) may appear in the list if it is
enclosed in slashes.

1 6 - 8
REV. 0

PDR3057 FORTRAN STATEMENTS

Note

In the current revision, inclusion of a COMMON block name has
no effect. This feature is included to allow compatibility
with the new proposed FORTRAN standard.

Variables listed in the SAVE statement are assigned local storage in the
linkage frame (static) rather than the stack frame (dynamic). Thus, the
SAVE command has meaning only when the program is compiled including the
DYNM command (64V mode only), Symbol names in DATA statements, SAVE
statements or EQUIVALENCEd to names in these statements are stored in the
linkage frame. Only variables in the linkage frame can be initialized.
Variables allocated to the stack frame are not preserved from one subrou­
tine CALL to the next.

If the SAVE statement appears without a list of symbol names then all
local storage is allocated to the linkage frame.

A further discussion of local storage allocation will be found in Section
18.

EXTERNAL PROCEDURE STATEMENTS

CALL Statement

CALL subroutine [argument-1, argument-2,..., argument-n]

Where subroutine is a subroutine name and the arguments are a list (possi­
bly empty) of the arguments passed and to be returned. Subroutines may
not CALL themselves unless the program units are all compiled with the DYNM
parameter (64V mode on Prime 400 or higher computers),

EXTERNAL Statement

EXTERNAL VI, V2, f t., Vn

Where each V is declared to be an external procedure name. This permits
the name of an external function (such as COS) to be passed as an argument
in a subroutine call or function reference.

DATA DEFINITION STATEMENT

DATA Statement

DATA kl/dl/,k2/d2,...kn/dn

Allows initialization of variables or array element at load time. Each k
is a list of variables or array elements (with constant subscripts) sepa­
rated by commas; each d is a corresponding list of constants of the same
data mode as the variables and array elements in the list.

16 *" 9 November 1977

SECTION 16 PDR3057

COMPILATION AND RUN-TIME CONTROL STATEMENTS

The following statements provide diagnostic tools for the programmer and
are discussed in more detail in the Debugging section and the Compiler
Section (4).

FULL LIST Statement

Causes a listing of subsequent source code with a symbolic listing. Over­
ridden by compiler parameters.

LIST Statement

Causes a listing of subsequent source code with no symbolic listing. Over­
ridden by compiler parameters.

INSERT Statement

See $INSERT.

NO LIST Statement

Causes a cessation of subsequent source code listing and of symbolic
listing. Overriden by compiler parameters.

FULL LIST, LIST, AND NO LIST may be used anywhere in the source program.

TRACE Statements

TRACE VI, V2,...Vn

Item trace; Each V is a variable or array name. Prints the value of the
variable at each point in the program where the variable is modified.
Printout of a variable may be altered by another TRACE command with that
variable name. Trace coding is inserted into the program at compilation;
TRACE takes effect in source program physical order, not logical execution
order.

TRACE n

Area Trace; Causes values of the variables used in statement label n to
be printed out during execution of the code between the area TRACE state­
ment and statement label n.

Note

Do not place an area trace statement in the range of another
area trace statement, unless both refer to the same statement
label.

REV. 0 16-10

PDR3057 FORTRAN STATEMENTS

TRACE is overridden by the compiler global trace parameter (see Section
4;. It is possible to have the TRACE output written into a file instead
of at the user's terminal. Prior to executing the program, switch the
output to a file by the PRIMOS-level command.

COMO filename

where filename is the file into which terminal output is to be written.
After the program has halted, output to filename is stopped and the file
closed by:

COMO -END

The form of the command given here does not turn off output to the termi­
nal. A complete description of this command is given in the PRIMOS INTER­
ACTIVE documentation.

$INSERT Statement

$INSERT treename

Insert into the program, at compilation time, the file with specified
treename. The $INSERT command should not be nested; do not include a
$ INSERT command in a file which will be inserted into a program by a
$INSERT command.

$INSERT is used for:

Insertion of COMMON specification into programs.

Commonly used one-line functions.

Data initialization statements.

ASSIGNMENT STATEMENTS

Assign a value to a variable

1. arithmetic A=B**2
2. logical (P, Q, R are logical variables)

P=Q.OR.R
P=A.GT.B

Mixed Mode

Data of different modes may be combined with one another with the follow­
ing restrictions:

1. Logical data should not be combined with any other mode.

2. No operator can combine Double Precisions and Complex data,

16 ~ H November 1977

SECTION 16 PDR3057

3. Subscripts and Control statement indexes must be integers
(short or long).

4. Arguments of functions and subroutines must be of the mode
expected by the called subprogram.

It is convenient to think of the arithmetic data modes as forming a
hierarchy:

COMPLEX or DOUBLE PRECISIONS

REAL

LONG INTEGER

SHORT INTEGER

Whenever two data of differing modes are concatenated by an operator, the
resulting mode is that of the higher in the list, as in:

REAL + SHORT INTEGER is a REAL

CAUTION

If LONG INTEGERS are converted to REALs, there may be a loss of
precision. The rules for data mode conversion via assignments
(i.e., A=B) are given in Table 16-1. Conversion of long (short)
to short (long) integers by assignment is not recommended as
good practice; use the M L and INTS functions instead.

CONTROL STATEMENTS

ASSIGN Statement

ASSIGN k TO i

Where k and i are integer variables whose values are statement label num­
bers. An ASSIGN statement must be executed prior to an assigned GO TO..

CONTINUE Statement

[statement-number] CONTINUE

Transfers control to the next executable statement. With the optional
statement-number, it is usually used to indicate the end of the range of
a DO loop.

DO Statement

DO n i=ml, m2 [,m3]

REV. 0 16 ̂ 12

PDR3057 FORTRAN STATEMENTS

Table 16-1. Data Mode Rules for Assignment Statements (A=B)

FROM B
(right-hand-
side)

Integer,
Short

Integer,
Long

Real

Double
Precision

Complex

TO A (left-hand-side)

Integer,
Short

Assign

Truncate
and
Assign

Fix
and
Assign

Fix
and
Assign

Fix
and
Assign
Real Part

Integer,
Long

Sign-
Extend
and
Assign

Assign

Fix
and
Assign

Fix
and
Assign

Fix
and
Assign
Real Part

Real

Float
and
Assign

Float
and Real
Assign

Assign

DP Evaluate
and Real
Assign

Assign
Real
Part

Double
Precision

DP Float
and
Assign

DP Float
and
Assign

DP Evalu­
ate and
Assign

Assign

NOT
ALLOWED

Complex

Float and
Assign to
Real Part
(Imaginary
Part is Zero)

Float and
Assign to
Real Part
(Imaginary
Part is Zero)

Assign to
Real Part
(Imaginary
Part is Zero)

NOT
ALLOWED

Assign

Assign:
Real Assign:

DP Evaluate:
Float:
DP Float:
Fix:

Truncate:

Sign-Extend:

Transmit resulting value without change
Transmit as much precision of the most
significant part of the resulting value as
Real datum can obtain.
Evaluate, then DP float.
Transform value to Real datum form.
Transform value to Double Precision form.
Truncate fractional part and transform
integral part to integer.
Take 16 low-order bits and store in short
integer datum.
Pad 16 high-order bits with O's or l's if short
integer is positive or negative, respectively.

1 6 - 1 3 November 1977

SECTION 16 PDR3057

Executes statements until and including the statement with label n; ml,
m2, m3 are positive integers (constants, parameters, or variables only -
no expression or array elements) with m2>ml; i is an integer variable
which assumes the values ml, ml+m3, ml+2*m3, etc. ml is the initial
value, m2 the limit value, and m3 the increment. If m3 is not specified,
the increment is defaulted to 1.

DO loops may be nested; there is no syntactical limit to the nesting of
DO loops.

It is an undesirable programming technique to have the index variable
appear as the initial, limit, or increment values in the DO statement.

After the last execution of the loop, control passes to the next executable
statement following the terminal statement of the DO loop. This is called
a normal exit.

CAUTION

ANSI standard FORTRAN specifies that the value of the index
variable is undefined after a normal exit from a DO loop. The
value of the index variable at this point is completely depen­
dent upon the specific compiler and how it performs its limit
tests; hence, the terminal value of the index variable will
differ at different installations. It is extremely bad pro­
gramming to use the terminal value of this variable as impli­
citly set. If the user needs the value of this variable after
a normal exit, its value should be explicitly set by an assign­
ment statement.

Note

The DO loop in Prime FORTRAN is a one-trip DO loop. That is,
the loop commands will be executed at least once even if the
initial value is not less than the limit value. If it is
desired to skip the loop under certain conditions, an IF
statement preceding the DO statement should be used. Control
should be transferred to a statement subsequent to the termi­
nal statement of the DO loop, NOT to the terminal statement.

END Statement

The final statement of program, subroutine, or external function. Tells
the compiler that it has reached the end of the source program.

GO TO Statements

GO TO k

Unconditional. Transfers control to statement labelled k.

GO TO (kl, k2,...,kn), i

REV. 0 16-14

PDR3057 FORTRAN STATEt̂ ENTS

Computed. Transfers control to statement labelled k2 when integer expres­
sion i = j. If the value of i lies outside the range 1 to n, then control
passes to the next executable statement after the computed GO TO,

GO TO i, [(kl, k2..., kn)]

Assigned. Transfers control to statement labelled :i. Prior to executing,
the assigned GO TO a value must be assigned to i using the ASSIGN command.

There is no syntactical limit to the number of labels in a computed or
assigned GO TO.

IF Statement

Arithmetic. Where e is an arithmetic expression with an integer, real, or
double precision value. If e<0 (negative) control is transferred to
statement labelled kl, if e = 0 (exactly), control is transferred to
statement labelled 2, and if e>0 (positive) control is transferred to
statement labelled k3.

TT-, /logical, -e,
IF (expression) statement

Logical. Where e is a logical expression which may be .TRUE, or .FALSE.;
statement is any valid executable statement except a EX) or a logical IF
statement. If e is true, the statement is executed; if e is false, control
passes to the next executable statement.

Note

An arithmetic IF may be the statement in a logical IF but this
is not recommended as a good programming practice.

PAUSE Statement

PAUSE In]

Where fn] is an optional decimal number of up to five digits. Halts the
program, transfers control to subroutine F$HT and prints ****PA n
(R-identity) or ****PAUSE n (V-identity) at the keyboard. The value of n
is printed in octal representation. Keying in START continues operation
of the program at the next executable statement following PAUSE.

RETURN Statement

Returns to the main program from a subroutine or external function. It
must be the last logical statement in the subroutine or external function.

16 - 15 November 1977

SECTION 16 PDR3057

STOP Statement

STOP [n]

Where [n] is an optional decimal number of up to five digits. Halts the
program, transfers control to subroutine F$HT, prints ****ST n (R-identity)
or ****STOP n (V-identity) at the keyboard and returns control to the
PRIMOS level. The value of n is printed in octal representation.

INPUT/OUTPUT (I/O) STATEMENTS

(See Table 16-2 for list of FORTRAN device units.)

PRINT Statement

PRINT I £,/.#}
JJtigk. prints the list of elements on the user's terminal according to the
format specified in statement f. Equivalent to WRITE (l,f) <ft.ist/,

READ Statements

For all READ statements: if END = a is included, then control is trans­
ferred to statement number a if an end-of-file condition is encountered
during the read. If ERR = b is included, then control is transferred to
statement number b if a device or format error is encountered during the
READ statement.

list - is a list of variables and array names (separated by commas)
into which data are read.

READ (u, f, [, END = a] {, ERR = b]) list

Formatted READ. Causes data on FORTRAN unit u to be read into the
variables/array names specification list according to the format of
statement f. If no list is given, one record is read and ignored.

CAUTION

Hollerith formats should be avoided in FORMAT statements
associated with READ statements. The A format should be
used for strings.

READ (u [, END = a] [, ERR = bj) list

Binary READ. Causes data on FORTRAN unit u to be read into the variables/
array names specification list. Enough records are read to satisfy all
the list items. If more items are on the record than are required by the
list, the excess items are ignored. If no list is given, one record is
read and ignored.

SEV- * . 1 6 - 1 6

PDR3057 FORTRAN STATEMENTS

oert"&
Table 16-2. Devices and TheirAFORTRAN U n i t Numbers

FORTRAN Number
(Unit No.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

j Device
i

1
u s e r t e r m i n a l
paper t ape r e a d e r o r punch
MPC ca rd r eade r
s e r i a l l i n e p r i n t e r
F u n i t 1
F u n i t 2
F u n i t 3
F u n i t 4
F u n i t 5
F u n i t 6
F u n i t 7
F u n i t 8
F u n i t 9
F u n i t 10
F u n i t 11
F u n i t 12
F u n i t 13
F u n i t 14
F u n i t 15
F u n i t 16
9 - t r ack magnet ic t a p e u n i t 0
9 - t r a c k magnet ic t a p e u n i t 1
9 - t r ack magnet ic t a p e u n i t 2
9 - t r a c k magnet ic t a p e u n i t 3
7 - t r ack magnet ic t ape u n i t 0
7 - t r ack magnet ic t a p e u n i t 1
7 - t r ack magnet ic t a p e u n i t 2
7 - t r ack magnet ic t ape u n i t 3

16 - 17 November 1977

SECTION 16 PDR3057

CAUTION

If the list requires more data than are in the current record,
then the next record (s) are read until the list is satisfied.
This is not a clean programming technique and should be
avoided.

READ (u,* [, END = a] [, ERR = b]) list

List-directed READ. List-directed I/O frees the prograirmer from including
format statements for READs frcm free-format input devices such as the
user terminal. The input data is converted according to the data type of
items in the I/O list. Additionally, this feature provides a method
to indicate in the input data that an item in the I/O list is to remain
unchanged by the READ statement-

Delimiters: Values in list-directed input are separated by a blank,
comma, or slash. A slash or comma may be preceded and followed by any
number of blanks. An end of record is treated as a blank. A slash
terminates a READ and leaves the values of the remaining items in the I/O
list unchanged. Two adjacent commas with no intervening characters except
blanks will leave the corresponding item in the I/O list unchanged. A
list-directed READ will read any number of records until a slash is
encountered or until all items in the I/O list have been satisfied.

Examples:

1. Source line: READ(1,*)A,B,C
Input Data: 151,,2E2
Result: A=151.

B is unchanged
C=2.E2

2. Source l i n e : READ(1,*)I,J,K
Input Data: 5 -3 /
Result: 1=5

J=-3
K is unchanged

Numerical Input: If an item in the I/O list is a long or short integer
variable or array element, the corresponding input field must contain a
string of decimal digits optionally preceded by a + or - sign, as in:

-357 100514 +12387

If a real or double precision item is in the I/O list, the corresponding
input field must contain a string of decimal digits with an optionally
embedded decimal point. An exponent field may follow in either E or D
format, as in:

51 -27.68 7.65E-14 863D2
.503 +265.

REV. 0 16-18

PDR3057 FORTRAN STATEMENTS

The input field corresponding to a complex item must contain two real
numbers (as described above) , separated by catma and enclosed in
parentheses, as in

(lE2,-2.) (5.67E-6,8.09)

Character String Input: A variable or array of any type can be set equal
to a character string using list-directed READ. A character string
must be enclosed in single quotation marks in the input data. Within a
character string, a quotation mark is represented by two consecutive
quotation marks. A character string, regardless of length, matches a
single item in the I/O list whether it is a variable, array element, or
whole array (represented by including the unsubscripted array name in the
I/O list) . If the character string is shorter than the list item, the
rightmost characters of the list item are blank-filled. If the character
string is longer than the list item, the rightmost characters of the
character string are ignored. Characters are packed two per word, as in:

1. Source: INTEGER*2 IBUF(2)
READU,*) IBUF

Input Data: 'ABC'
Result: IBUF(1)=AB

IBUF(2)=C

2. Source: READ(1,*) (IBUF(I) , 1=1,2) ,J
Input Data: 'GfllJ', 5 /
Result: IBUF(1) = ,GHI

IBUF (2) =5
J is unchanged

Note

If the I/O list has been satisfied, a slash in the input data
is optional. A carriage return is the end of a record on a
READ from a user terminal and is treated as a blank on list-
directed READs.

WRITE Statements:

For all WRITE statements: If ERR=b is present, control is transferred
to statement b if a device error is encountered during the WRITE
statement.

:iist - is a list of variables and array names (separated by ccnmas) from
which data are printed.

WRITE (u,f [,ERR=b]) list.

Formatted WRITE. Causes data in the list to be written out on FORTRAN
unit u according to the format statement f_.

WRITE (u [,ERR=b]) list

,,- _ -JQ Itovenber 1977

SECTION 16 PDR3057

Binary WRITE. All words in the list are written into a record in binary
format. If there are insufficient data to fill the record, it is padded
out with zeroes; if there are more items than a record can hold, multiple
records are written automatically. If necessary, the last record is
padded with zeroes.

Both READ and WRITE statements allow implied DO loops for transferred
data between arrays and devices. In this case, the list could have a
form such as:

(NAMEl (INDEXl) , INDEXl = 1 , 5, 2)

OR

(NAMEl (INDEXl) , NAME2 (3, INDEXl) , INDEXl = 1, 5)

OR

(NAME1 (INDEXl, INDEX2) , INDEX 1 = 1, m) , INDEX2 = 1, n, p)

where m, n, and p are constant positive integers (constants, parameters,
or variables).

CODING STATEMENTS

c - number of ASCII characters to be transferred
f - format statement label
a - array name
l i s t - I/O l i s t of elements (same as in a READ or WRITE statement)

DECODE Statements:

DECODE (c , f , a [, ERR=sn]) l i s t

Formatted DECODE. Converts the f i r s t c characters in the array a from
ASCII data in to the I/O l i s t elements according to the specif ied format
f. I f the opt ional e r ror branch i s inser ted , a FORMAT/DATA mismatch will}
cause a t ransfe r to the statement labelled sn.

DECODE (c, *, a [, ERR=sn])list

L is t -d i rec ted DECODE. Allows the user to input/decode data frcm free-format
input devices such as the user terminal. The requirements on input and
del imiters are the same as for the l i s t - d i r ec t ed READ statement (see READ) .

ENCODE Statement:

ENCODE (c , f ,a) l i s t

Converts the elements of the I/O l i s t in to ASCII data according to format
f and s tores the f i r s t c characters of the resu l t an t s t r ing in to array a.

*&' * 1 6 - 2 0

PDR3057 FORTRAN STATEMENTS

FORMAT STATEMENTS

FORMAT Statement:

sn FORMAT (dFl dF2 dF3...Fn)

sn - mandatory statement number
Fl - etc. - is a format field description

d~~- is a format delimiter (, or /) . (The first d may be null)

The right parentheses marks the end of a record.

Delimiters:

/ (slash) - proceed to next record
, (comma) - remain within current record

The maximum record length is determined by the type of device or storage
unit.

Format Field Descriptor: Tables 16-3 and 16-4 summarize the field
descriptors available in Prime FORTRAN IV, where n (positive integer
constant) is the number of times the basic field descriptor to be
repeated, w (positive integer constant) is the total width of the field in
columns (or characters).

d (non-negative integer constant) is the number of digits to the right
of the decimal point. (See format G output for an exception to this) .

Repetition: All field descriptors except those marked by an * in Tables
16-3 and 16-4 (X,H,B) can be assigned a repeat count causing the
descriptor to be used that nunber of times in succession.

FORMAT (3E10.5)

and

FORMAT (E10.5, E10.5, E10.5)

are equivalent.

Groups of descriptors (including X,HfB) may be enclosed in parenthesis
and the entire group assigned a repeat count.

FORMAT (2(3011.6,5X5)

and

FORMAT (3G11.6,5X,3G11.6,5X)

are equivalent.

Repeat groups have a maximum nesting of two levels.

FORMAT (3(2(10F.7,3X),I2,5X))

is permissable.

15 _ 21 November 1377

SECTION 16 PDR3057

Table 16-3. Results of Formats in Output Statements

1 FOEMAT OOTPOT

snFw.d

Floating

snEw.d

Exponential

snGw.d

i

1

General

snDw.d

Double Precision

Prints Real or Double Precision Numbers as iubced output
(no exponent) with as many significant figures as the
data type allows, w is the total field width and must
allow one position for a decimal point and one for a
minus sign (if negative numbers are to be printed).
d is the number of decimal places (right of decimal
point) . Numbers are right justified. Leading zeroes
are inserted for numbers less than 1; trailing zeroes
are used to fill the decimal places if necessary.
Only minus signs are printed. If total field width is
too small, the number is truncated and a $ printed if
positive, a = if negative. If the decimal section is
too small, the number is rounded.

Prints Real or Double Precision numbers as a number
with a magnitude between 0.1 and 0.9999999 times an
exponent. The field width w must allow for a minus
sign (if one is to be printed) , a decimal point, E
(the exponent) , a blank or a minus sign, and one or
two positions for the exponent value. The number d
sets the number of places to the right of the decimal
point - the maximum is seven. The representation
with magnitude less than 1 may be overridden using
scale factors.

Prints Real or Double Precision numbers in F or E
format according to the magnitude of the number and
the decimal place specifier - d.

Magnitude Effective Format
0.1 to 1.0 F(w-4) .d,4X
1.0 to 10.0 F(w-4) .(d-1), 4X

• •
• •

10**(d-2) to 10** (d-1) F(w-4).l, 4X
10**(d-1) to 10**d' F(w-4).0, 4X
Outside Range Ew.d

Truncation is performed as for E and F formats

Prints Double-Precision Numbers only in an exponen­
tial format similar to the E format except that the
letter D is used instead of E and that d has a
maximum value of 14.

_ — — — i .

REV. 0 16 - 22

PDR3057 FORTRAN STATEMENTS

Table 16-3. Results of Formats in Output Statements (Cont)

FORMAT OUTPUT

WX
Space

Tw

Tab

wHclc2.. .cw

Hollerith

nAw

ASCII

nLw

Logical

nlw

Integer

B * string'

Business

Writes w spaces into the output record (negative w
backspaces for replacing) .

Positions output pointer to column w in the output
record. Back tabbing is permitted.
Example: (Tl,40A2,T15,F9.3)

Prints the string clc2 cw

1. Does not require an item in the output list
2. Need not be followed by a delimiter

Prints Integer, Real, Complex, or Double Precision
variables as ASCII characters, w is number of

of characters per variable or array name,
left justified and padded with spaces.

Output is

Prints logical variables: +1 prints as T, 0 prints as
F. Output is right justified and padded with spaces.
If w<l there is no output.

Prints contents of integer (short or long) variables
or array names as a string of integers (no decimal
points) . If string is longer than field width w then
number is right truncated and preceded by a $ if
positive and = if negative. Minus signs are printed
but not plus signs.

Prints templated numerical output for business
purposes. Features include: Fixed and floating signs,
trailing signs, plus sign suppression, trailing minus
change to 'CR1, fixed & floating $, field filling,
leading zero suppression, insertion of commas. Length
of string determines field width; if number is greater
than field width then output is printed as string of
asterisks. See text for details on this format

* No repeat count is allowed associated with the format specifier itself,
but the format specifier may be included in a group repetition.

16 - 23 November 1977

SECTION 16 PDR3057

Table 16-4 . R e s u l t s of Formats i n Inpu t S t a t emen t s .

FOFMAT INPUT
snFwr.d

F l o a t i n g

snEw.d

Exponential

snGw.d

General

External numbers may be represented as integers mixed
integers, or scaled numbers (with exponents). Leading
blanks are treated as zeroes; imbedded and trailing
blanks are ignored. The implied decimal point is placed
to the left of the first d digits counting from the
right (if no decimal point in the external number).
A decimal point in the external number overrides the
positional decimal point. The decimal exponent (D or E)
and the exponent value are a unit; both must be included
or emitted. All numbers are assumed positive unless
a minus sign is present.

All numbers are initially converted internally to double-
precision numbers; if entered in E,F, or G format they
are truncated.

snEw.d

Doub l a - P r e c i s ion

wX

space

Tw
Tab

Skips w columns in the input data (neqative w
backspaces to reload record)

wHclc2—cw *
Hollerith

nAw

ASCII

Tabs to column w in the input record.

NOT USED

Stores ASCII characters in Integer, Real, Complex, or
Double-Precision variables. If input is greater than
storage available in variables, only the leftmost
characters are stored.

REV. 0 16 - 24

Table 16-4. Results of Formats in Input Statements (Cont)

1
FORMAT INPUT

nLw

Logical

nlw

Integer

B'string' *

Business

Stores true/false in internal representation based upon
first non-space characters in the input data (all others
ignored). If T-set to +1; if F-set to 0; if anything
else-set to 0 and set error flag (use OVERFL to look at
error flag).

Stores external numbers in integers. If no sign is
present, a plus sign is assumed. A sign or blank is
counted as one character position. No decimal points
are allowed.
If there are more numbers than the field width, w,
only the leftnmost w characters are stored.

NOT USED

No repeat count is allowed associated with the format specifier itself
but the format specifier may be included in a group repitition.

16 - 25

SECTION 16 PDR3057

Rescanning Format Lines: If the format list is exhausted before the
input/output list, the format list is repeated. Repetition starts at
the opening (left) parenthesis that matches the last closing (right)
parenthesis in the format list. The parentheses around the format list
itself are used only if there are no other parentheses. Any repeat
count preceding the rescanned format are in effect.

Output - the current record is padded with blanks and a new record
is started.

Input - the remainder of the current record is skipped and the
device advanced to the beginning of the next record.

Formats as Variables: It is possible to enter format statements at run
time by any method of building it as text string and loading it into an
array. The array can later be referenced in lieu of a FORMAT statement,
by the READ or WRITE statement that handles the data. Arrays to be used
for this purpose must be assigned as integer type and must be dimensioned
to accomodate the format description, at two characters per word. The
format description is loaded into the array by a READ statement that
references a type A format statement:

DIMENSION FORM (6), TEXT (80)
INTEGER FORM
READ (1,20) FORM

20 FORMAT (6A2)
WRITE (l,FORM) (ARG (I) , 1=1,3)

These statements provide for an output format specification such as
(3(F7.3,I7)) to be entered at run time. Note that the specification must
include opening and closing parenthesis but not the word FORMAT.

B-Format: The B-Format is used in printing business reports where it is
desirable to fill number fields to prevent unauthorized modifications
(as on checks), suppress leading zeroes and plus signs, print trailing
minus signs (accounting convention) and convert minus signs to CR (for
indicating credit entries on bills) . The form of the R-field specifiers
is:

B 'string1

The length of the string determines the field width. If the width is too
small for the number, then the output will be a string of asterisks
filling the field. Legal characters for the string are;

+ - $, * Z # . CR

Plus ('+).:

If only the first character is + , then the sign of the number
(+ or -) is printed in the leftmost portion of the field.
(Fixed sign) If the string begins with more than one + sign, then
these will be replaced by printing characters and the sign of the
number (+ or -) will be printed in the field position immediately to

REV. 0 16-26

PDR3057 FORTRAN STATEMENTS

the left of the first printing character of the number (floating sign)
If the rightmost character of the string is +, then the sign of the
number (+ or -) will be printed in that field position following the
number (Trailing sign) .

Minus (-) :

Behaves the same as a plus sign except that a space (blank) is
printed instead of a + if the number is positive (Plus sign
depression).

Dollar Sign ($) :

A dollar sign ($) may at most be preceded in the string by an
optional fixed sign. A single dollar sign will cause a $ to be
printed in the corresponding position in the output field. (Fixed
dollar) .

Multiple dollar signs will be replaced by printing characters tn the
number and a single $ will be printed in the position immediately
to the left of the leftmost printing character of the number.
(Floating dollar)

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or
a fixed dollar. Asterisks in positions used by digits of the number
will be replaced by those digits; the remainder will be printed as
asterisks. (Field filling)

Z:

If the digit corresponding to a Z in the output number is a leading
zero, a space (blank) will be printed in that position; otherwise
the digit in the number will be printed. (Leading-zero suppression)

Number sign (#):

#'s indicate digit positions not subject to leading-zero
suppression; the digit in the number will be printed in its
corresponding portion whether zero or not. (Zero non-suppression)

Decimal point (.):

Indicates the position of the decimal point in the output number.
Only #'s and/or either trailing signs or credit CCR) may follow the
decimal point.

Comma (,) :

Commas may be placed after any leading character, but before the
decimal points. If a significant character of the number (not a sign

16 - 27 November 1977

SECTION 16 PDR3057

or dollar) precedes the comma, a , will be printed in that position.
If not preceded by a significant character, a space will be printed in
this position unless the ccmma is in an asterisk field; then an *
will be printed in that position.

Credit (CR)

The characters CR may only be used as the last two (rightmost) of the
string. If the number is positive, 2 spaces will be printed following
it; if negative, the letters CR will be printed.

See Table 16-5 for examples of B-Format usage.

Scale Factors (D,E,F, and G Formats) : A scale factor designator for use
with the F,E,G, and D descriptors causes a multiplication by a power of
10. The form is:

nP (represented as s in Tables 16-3 and 16-4)

Where n, the scale factor, is an integer constant with an optional minus
sign. Once a scale factor has been specified, it applies to all
subsequent F,E,G, and D field descriptors, until another scale factor
is encountered. If n=0, an existing scale factor is removed. The scale
factor has no effect on type I,A,H,X,L, orB descriptors.

E and D Output Scale Factor: Before output conversion, the fractional
part of the internal number is multiplied by 10**n and the exponent is
decreased by n.

F Output Scale Factor: The internal number is multiplied by 10**n.

G Output Scale Factor: The scale factor has an effect only if the
internal number is in a range that uses effective E conversion for
output. In this case, the effect of the scale factor is the same as
in the corresponding E conversion.

D,E,F,G, Input Scale Factor: The internal value is formed by dividing
the external number by 10**n. However, if the external number contains
a D or E exponent, the scale factor has no effect.

Formatted Printer Control: The first character of each ASCII output
record controls the number of vertical spaces to be inserted before
printing begins on the line printer.

REV. # 16-28

PDR3057 FORTRAN STATEMENTS

Table 16 -5 . Examples of B-Format Usage.

Nunber

123
12345
0
123
1234
0
0
1.035
0
1234.56
123456.78
Q
2
-2
2
-2
234
-234
234
-234
12345
-12345
123
-123
98
98
156789

Format

B'####'
B '#### '
B '#### '
B'ZZZZ'
B'ZZZZ'
B'ZZZZ1

B'ZZZf
B ' # . # # '
B ' # . # # '
B'ZZZ,ZZZ,
B'ZZZ,ZZZ,
B'ZZZ,ZZZ,
B'+###'
B'+###'
B'-ZZ#'
B'-ZZ# f

B*ZZZZZ+'
B'ZZZZZ+'
B'ZZZZZ-'
B'ZZZZZ-'

ZZ#.
zz#.
zz#.

B'ZZZ,ZZ#CR'
B'ZZZ.ZZ#CR'
B'+++,++#.
B'+++,++#.
B'$ZZZZZZ#
B'$$$$$$$#
B»<5*** ***

##'
'
1

1

**l

.##'

.## '
,## '

t .## '

Output F i e l d

0123

0000

123
1234

0
1.04
0.00

1,234.56
123,456.78

0.00
+002
-002

2
- 2

234+
234-
234
234-

12,345
12,345CR

+123.00
-123.00

$ 98
$98

$****156,789.00

16 - 29
Noveirber 1977

SECTION 16 PRD3057

F i r s t Cha rac t e r E f f e c t

Space one l i n e
0 two l i n e s
1 form feed - first line of next page

(effective only on devices
with mechanized form feed.)

+ no advance - print over previous line
(line printer only)

Other one line

In the case of space, 0,1, and +, the control character is not printed,
on all other cases, the character is printed as well as spacing a line.

DEVICE CONTROL STATEMENTS

For physical positioning of sequential access devices.

BACKSPACE Statement (for magnetic tape unit only)

BACKSPACE u

Repositions FORTRAN unit u so that the preceding record is now the next
record. If the unit is at its initial point, this command nas no effect.
Backspace has no effect on disk files.

ENDFILE Statement

ENDFILE u

Writes an e n d f i l e r eco rd on FORTRAN u n i t u i n d i c a t i n g t h e end of a
seqpaential f i l e f o r magnet ic t a p e . Closes a d i sk f i l e on FORTRAN u n i t u .

REWIND Sta tement

REWIND u

Repos i t ions FORTRAN u n i t u t o i t s i n i t i a l p o i n t . Does n o t c l o s e o r t r u n ­
c a t e d i s k f i l e .

FUNCTION CALLS

Funct ions a r e c a l l e d by means of assignment s t a t emen t s i n which t h e r i g h t
had s i d e i s an expres s ion of t h e form:

name (a rgument - l , a rgument -2 , . . . a rgument -n)

REV. 0f 1 6 - 3 0

PDR3057 FORTRAN STAEMENTS

Where name is the name of the function called (COS, SIN, etc.) and
argument is a non-empty list of arguments to the function separated by
ccmmas. The data modes of the arguments must be the same as the data
modes in the definition of the function. There is no syntactical limit
to the number of arguments.

SUBROUTINE CALLS

Subroutines are called frcm a program by the statement:

CALL name (argument-l/argument-2,... ,argument-n)

Where name is the symbolic name assigned by the SUBROUTINE statement
beginning the subroutine subprogram. The argument is a list of arguments,
seme of which are passed to the subroutine by the calling program, and the
remainder are dummy arguments whose values are calculated by the
subroutine and returned to the main program. The arguments in the main
program must agree in number, order, and mode with the arguments used in
the subroutine subprogram. There is no syntactical limit to the number of
arguments.

CAUTION

Do not place constants in the argument list of a subroutine
or function in the position where a value is to be returned
to the calling program. This will cause the constant to
be altered and produce undesirable results.

16 - 31 November 1977

PDR3057 FUNCTION AND SUBROUTINE

SECTION 17

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

FUNCTIONS

There are four types of functions; all are called in the same manner
(see Section 16).

Prime FORTRAN Library Functions

These are a collection of library subprograms (see Section 20) which are
called during compilation and appended to the main program during loading.

Prime Extended Intrinsic Functions

These are a collection of functions designed to increase the efficiency
of Prime FORTRAN IV in logical processing of integers. They are inserted
in the program by the compiler.

User-Defined Function Subprograms

FUNCTION subprograms can consist of many statements, coded and compiled
separately. This permits them to be used in the same way as library
functions.

FUNCTION subprograms must be prepared as separately compiled subprograms
that produce a single result, in the following format:

mode FUNCTION name (argument-1, argument-2,...argument-n.)

(Any number of FORTRAN statements which perform the required
calculations, using the supplied arguments as values.)

name = Final calculation

RETURN

1 7 - 1 November 1977

SECTION 17 PDR3057

FUNCTION Statement: The FUNCTION statement, which must be the first state­
ment of a FUNCTION subprogram, assigns the name of the function and iden­
tifies the dummy arguments. In the preceding example, name is a symbolic
name assigned to identify the function, and each argument is a dummy argu­
ment. There is no syntactical limit to the number of arguments. The
function name must conform to the normal rules for all symbolic names with
regard to number of characters, etc. Implicit result mode typing occurs
according to the first letter of the name. Implicit mode typing can be
overridden by preceding the word FUNCTION with one of the mode specifica­
tions. The function name must differ from any variables used in the
function subprogram or in any main program which references the function.

Body of Subprogram; The body of the function subprogram can consist of
any legal FORTRAN statements except SUBROUTINE, BLOCK DATA, or other
FUNCTION statements. The statements that evaluate the function use
constants, parameters, variables, and expressions in the normal way.
The program must produce a single result for a given set of argument
values. The subprogram must equate the assigned symbolic function name to
the result, by using name on the left side of an assignment statement.
It is the function name itself, used as a variable, that returns the
result to the main program.

RETURN Statement: The RETURN statement consists of a single word RETURN.
It terminates the subprogram and returns control to the main program. The
RETURN statement must be the last statement in the subprogram (logically,
not physically; that is, it must be the last statement to which control
passes).

Statement Functions

Statement functions are embedded in the coding of the main program and are
compiled as part of the main program. Any calculation that can be expressed
in a single statement, and produces a single result, may be assigned a
function name and referenced in the same way as a library function. A
statement function is defined in the form:

name (argument-1, argument-2, argument-n) = Expression

where name is the symbolic name assigned to the function and each argument
is a dummy variable that represents one of the arguments.

The following rules apply to all functions:

1. The name may consist of one to six alphanumeric characters, the
first of which is alphabetic. It must differ from all other
function names and variable names used in the main program.

2. The argument list follows the name and is enclosed in parentheses.
There must be at least one argument. Multiple arguments are sep­
arated by commas. Each argument must be a single nonsubscripted

REV. 0 1 7 - 2

PDR3057 FUNCTION AND SUBROUTINE

variable. These arguments are only dummy variables, so their
names may be the same as names appearing elsewhere in the pro­
gram. The dummy variable names do indicate argument mode,
however, by implicit or explicit mode typing. There is no
syntactical limit to the number of arguments.

3. During each call of a function, the values supplied as the argu­
ment variables must be in the same mode as the arguments were
when the function was defined.

4. Implicit mode typing of the result of a function is determined
by the first letter of the function name. Functions that begin
with I,J,K,L,M, or N produce INTEGER results; others produce
REAL results. Regardless of the first letter, the result mode
can be set by an appropriate mode specification preceding the
FUNCTION statement.

5. The expression that defines the function may use library functions,
previously defined function statements, or FUNCTION subprograms;
but not the function itself. Dummy variables cannot be subscripted.

6. Variables in the expression that are not stated as arguments are
treated as coefficients - i.e., are assumed to be variables ap­
pearing elsewhere in the main program.

7. Statement functions must be defined following specification and
DATA statements but before the first executable statement of a
program.

SUBROUTINES

Some types of subroutines include:

PRIMPS System Subroutines

These invoke the PRIMOS system to perform the actual work. They allow
file transfer, attaching, etc. (See Section 20 and REFERENCE GUIDE,
FILE MANAGEMENT SYSTEM (FMS), PDR3110).

Application Library Subroutines

These handle file manipulation (opening and closing, reading, and writing,
etc.) and data transfers, greatly enhancing the capability of the FORTRAN
language (Section 20 and REFERENCE GUIDE, SOFTWARE LIBRARY, PDR3106).

FORTRAN Math Subroutines

These handle mathematical calculations such as matrix multiply and inver­
sion permutations, etc. (See Section 20.)

._ _. November 1977

SECTION 17 PDR3057

User-Defined Subroutines

Called in the same manner as those supplied with the system. They are
constructed as follows:

SUBROUTINE name (argument-1, argument-2, ...argument-n)

(any number of FORTRAN statements which perform the required calcula­
tions, using the supplied arguments, if any, as values).

RETURN
END

SUBROUTINE Statement: The SUBROUTINE statement, which must be the first
statement of a SUBROUTINE subprogram, assigns the name of the subprogram
and identifies the dummy arguments, if any.

The subprogram name must conform to the normal rules for symbolic names
with regard to number of characters, but the first letter does not set
the data mode of the results. The name must be unique to both the sub­
program and a main program which calls it.

The argument list usually consists of a series of dummy variables which
are processed by the subroutine and return arguments to the main program.
Each argument may be a variable, array, or function name. If an argument
is the name of an array, it must be mentioned in a DIMENSION statement
following the SUBROUTINE statement.

There is no syntactical limit to the number of arguments. A subroutine
with no arguments is allowable. Such a subroutine might obtain argu­
ments from, and return results to, COMiyDN. Or it might be used to out­
put a message or control function to a peripheral device.

CAUTION

Arguments that return values to the main program
must not be constants or expressions in the calling
sequence.

Body of a SUBROUTINE: The body of the subroutine can consist of any legal
FORTRAN statements except SUBROUTINE, BLOCK DATA, or FUNCTION statements.
The results of calculations may be stored in variables used by both the
subprogram and main program, or they may be placed in COMMON. Variables
may be used freely on either the right or left side of the equal sign in
assignment statements. Each variable that represents a result must ap­
pear on the left side of at least one assignment statement, in order to
present the result to the main program.

The subroutine is terminated by a RETURN statement (described previously).
The last physical statement in a subroutine must be an END statement.

REV. J2T 1 7 - 4

P A R T V

U T I L I T Y R E F E R E N C E

COMPILER REFERENCE,

SECTION 18

COMPILER REFERENCE

PRIME FORTRAN COMPILER PARAMETERS

All parameters are preceded by a dash, "-", in the command line. Para­
meters that are the PRIME-supplied default parameters (i.e., those that
need not be included) are indicated. The system manager may have changed
the defaults; if so, the programmer should obtain a list of the installa­
tion-specific defaults. (See figure 18-1).

BIG

Treats all dummy arrays as arrays that span segment boundaries and also
sets the compiler to produce 64V mode object code. If a dummy argument
array may become associated with an array spanning a segment boundary
(through a subroutine CALL statement or function reference) the compiler
must be made aware of this by including BIG in the parameter list. The
code generated here will work whether or not the array actually spans a
segment boundary. See also NOBIG, 64V. See Section 12 for more infor­
mation on this requirement.

B [INARY] j treename
I YES
NO h

Specifies the binary (object) output file. If treename is given, then
that will be the name of the binary file. If YES is used, the name of
the binary file will be B+-PROGRAM (where PROGRAM is the source filename)
If NO is used, then no binary file is created. Omitting the parameter
is equivalent to the inclusion of -BINARY YES. (See Table 18-1.)

DCLVAR

Flags undeclared variables. If included in the parameter list, the com­
piler will generate an error message when a variable is used in the pro­
gram, but not included in a specification statement. The message will be
generated once per undeclared variable. See NODCLVAR, SPO.

1 8 - 1 November 1977

SECTION 18 PDR3057

Table 18-1. Compiler File Specifications

Compiler
Mnemonics

treename

YES

NO

TTY

SPOOL

option
not
invoked

INPUT or SOURCE

looks for file named
treename as source
file

not applicable

not applicable

compiler will com­
pile program as
entered from the
terminal.

not applicable

source filename must
be first option
after FTN command.

LISTING

opens file named
treename as listing
file

uses default filename
for listing file.
L+PROGRM

no listing file.

print listing on user
terminal.

spool listing directly
to line printer.

same as NO

BINARY

opens file named
treename as
(object) file.

used default file­
name for binary
file. B^ROGRM

no listing file.

not applicable

not applicable

same as YES

To use other peripheral devices such as magnetic tape, card reader, or paper
tape punch/reader for file location, see Table 18-2 for A- and B-register
settings.

REV. 0 18-2

PDR3057 COMPILER REFERENCE

DEBASE

Conserves Loader base areas. When enabled, it reduces the sector zero
requirements of large programs. The compiler generates double-word memory
reference instructions and uses the second word as an indirect link for
all references to the same item within the relative reach. Use of this
option reduces sector zero usage by 70% to 80%. Programs compiled with
this option can be loaded only in the relative addressing modes (32R or
64R) (a loader NS diagnostic is generated if an attempt is made to load
in a sectored addressing mode).

DYNM

Enables local storage in Stack Frame (Prime 400 and higher only). Allows
dynamic allocation of local storage and also sets the compiler to generate
64V mode object code. The DYNM parameter allows better memory utilization
in the 64V mode. It also allows the creation of recursive FORTRAN subrou­
tines (subroutines which call themselves). See SAVE, 64V.

ERRLIST

Prints only error messages in the listing file. See EXPLIST, LIST.

Note

This parameter has no effect unless an output
device/file is specified using LISTING.

ERRTTY Default

Prints error messages at the user terminal. The normal system default
causes each statement containing an error to be printed at the user ter­
minal. This feature is especially useful when a corrected program is
being recompiled, to confirm that the errors have been properly corrected.
See NOERRTTY.

EXPLIST

Prints full listing in the listing file. The full listing consists of an
assembly language type listing, the source statements (with line numbers),
and error messages. See ERRLIST, LIST.

Note

This parameter has no effect unless an output
device/file is specified using LISTING.

1 8 3 November 1977

SECTION 18 PDR3057

FP Default

Generate instructions from the floating-point skip set when testing the
result of a floating-point operation.

I[NPUT] treename

Specifies the treename of the input source program (see Table 18-1).
This parameter must not be used if the source filename immediately follows
the PTN command; otherwise, it must be included in the parameter list.
See SOURCE.

INTL

Long integer default. Sets the long integer (INTEGER*4) as the default
for the INTEGER statement instead of the short integer (INTEGER*2). The
normal INTEGER data type in Prime FORTRAN is a 16-bit word. A 32-bit
integer data type is available through the use of the INTEGER*4 statement.

The long integer default parameter is used to simplify conversion of extant
FORTRAN programs to Prime computers. When this is enabled all variables,
arrays, and functions explicitly or implicitly specified as INTEGER will
be 32-bit integers. All integer constants will be treated as 32-bit
integers. Only names specifically appearing in INTEGER*2 statements will
be 16-bit integers. The 32-bit integer has a greater range than the
16-bit integer (-2147483648 to 2147483647 vs. -32768 to 32767). The
32-bit integer has the same storage requirement as the REAL* 4 (REAL) data
type. See INTS.

CAUTION

FORTRAN requires that the type of actual argument in
a function reference of CALL statement must agree with
the corresponding dummy argument in the referenced
subprogram. Note that a subprogram expecting a long
integer must NOT be called with a short integer (and
vice versa) . Most Prime-supplied subroutines expect
short integer arguments. Care should be taken when
calling these routines (e.g., SEARCH) in a program
compiled with the LONG INTEGER default options.

Example:

CALL SEARCH (INTS (1) 'FILENM', INTS (1))

INTS (long-integer) is a built-in function that con­
verts its arguments to a short integer. If the INTS
conversion functions are omitted, the integer constants

REV. 0 18-4

PDR3057 COMPILER REFERENCE

are compiled as long integers, providing INTL is
included in the parameter list. Do not confuse the
function INTS (long-integer) with the compiler
parameter INTS.

INTS Default

Short integer default. Sets the INTEGER default to INTEGER*2 rather than
INTEGER*4. See INTL.

LIST Default

Print source listing. Prints a listing of the source statements (with
line numbers) and error messages in the listing file. See ERRLIST,
EXPLIST.

Note

This parameter has no effect unless an output device/
file is specified using LISTING.

L [ISTING] treename
YES
NO
TTY
SPOOL

v.
Specifies the listing device/filename:

treename - opens this file for the listing.

YES - uses the default name for the listing file L+PROGRAM
(where PROGRAM is the source) .

NO - no listing file is created.

TTY - the listing file is printed on the user terminal.

SPOOL - the listing file is spooled directly to the line printer.

If this parameter is omitted from the parameter list, it is equivalent to
the -LISTING NO parameter inclusion (i.e., no listing file is created).

NOBIG Default

Utilizes Relative Addressing. This is the usual memory addressing mode.
See BIG.

1 8 - 5 November 1977

SECTION 18 PDR3057

NODCLVAR Default

Suppresses Undeclared Variable Flagging. Does not generate error messages
when undeclared variables are detected. See DCLVAR.

NOERRTTY

No Terminal Error Messages. Suppresses the printing of error messages on
the users terminal. See ERRTTY.

NOFP

Suppresses generation of floating-point skip instructions when testing the
result of a floating-point operation. Include NOFP in the parameter list
when compiling for machines that do not have the floating-point options.
Without NOFP, the programs will still execute on such machines but the UII
time will be longer. See FP.

NOTRACE Default

Suppresses Global Trace. Does not enable the global trace. See TRACE.

NOXREF Default

Suppresses Concordance. Do not generate any concordance (cross-reference)
listing. See XREFL, XREFS.

SAVE Default

Local Storage Allocation. Performs local storage allocation statically.
See DYNM.

S[OURCE]

Same as I[NPUT] (See INPUT).

SPO

Special Library Compilation (System Program Optimization) . When the
Library Mode parameter is included, certain statements and program formats
that would normally be flagged as errors are permitted. It also causes
re-interpretation of some statements. Finally, it enables the undeclared
variable flag (DCLVAR) . This parameter is used for the compilation of
some Prime-supplied software and is not recommended for general use. See
DCLVAR, NODCLVAR.

1 8 - 6

PDR3057 COMPILER REFERENCE

TRACE

Enable Global Trace. When this parameter is included, a trace printout
is generated at all assignment statements and at every labelled statement
in the program unit. The global trace affects only the program unit
being compiled; it has no effect on other program units in the same exe­
cutable program. See NOTRACE.

XREFL

Enable Full Concordance. Appends a full concordance (symbol cross-
reference) listing to the end of the program listing. The full concordance
includes all symbols in the program unit. See NOXREF, XREFS.

Note

This parameter has no effect unless an output device/
file is specified using LISTING.

XREFS

Enable Partial Concordance. Appends a partial concordance (symbol cross-
reference) listing to the end of the program listing. The partial concor­
dance does not include symbols that are referenced only in specification
statements. See NOXREF, XREFL.

Note

This parameter has no effect unless an output device/
file is specified using LISTING.

32R Default

32K words (64K bytes) mode. In the 32R (default) mode 64K bytes of user
space are available to each FORTRAN user. This space must accomodate
the main program, subprograms, all local storage, library routines, and
the COMMON blocks. More space is available to the user in the 64R and
64V modes. See 64R, 64V.

64R

64K words (128 bytes) mode. The mode gives the user 128K bytes of user
space. All main programs and all subprograms executed must be compiled
with the 64R parameter. When using the linking loader utility (LOAD),
the MODE command must also be used to change the load mode to 64R. This
assures the user of 128K bytes of user space. See 32R, 64V.

1 8 - 7
November 1977

SECTION 18 PDR3057

Generally, it can be determined if the 64R mode must be selected by look­
ing at the storage areas. Each area requiring space such as the COMMON
blocks can be examined. If the COMMON blocks require more than 64K bytes,
then the 64R mode decision is obvious. For example, if it is on a segment
boundary and a load is attempted resulting in an overflow, it is likely
that the addresses for the COMMON are overlapping the program area.

64V

Segmented Memory Mode. Puts the FORTRAN user into the 64V Segmented Memory
mode and allows the SEG utility to be used in lieu of the LOAD utility.
This is for large programs requiring more than 128K bytes of user space;
it provides a user area up to 1.9 or 3.9 Megabytes (15 or 31 segments of
128K bytes each) . It may be run on any Prime 400 (or higher system) under
PRIMOS IV or V. See BIG, NOBIG, 32R, 64R.

The LOAD utility and load modes are dictated by the options selected at
compile time, as shown in the following table:

Utility Compiler Option Load Option

LOAD 32R (default) D32R (default)
64R - D64R, D32R (default)

SEG 64V 64V (only mode)

Any PRIMOS system can use either the 32R or 64R addressing mode. Only a
Prime 400 (and higher) can have 64V addressing mode.

EXPLICIT SETTING OF THE A AND B REGISTERS

Note

If you will not be using the paper tape punch/reader,
card punch/reader or magnetic tape for I/O devices at
compilation time you need not read this section.

Operation

The FORTRAN compiler is invoked by the FTN command to PRIMOS.

FTN treename [1/a-register] [2/b-register]

where treename is the treename of the FORTRAN source file;

a-register and b-register are the values of the A and B
registers.

REV. 0 18-8

PDR3057 COMPILER REFERENCE,

The default values of the registers are:

A '1707 (binary = 0000001111000111)
Input file is on disk
No listing file
Binary file is on disk
Print error messages at user terminal
32R mode

B '0 (binary = 0000000000000000)
Short integers
No concordance

If the default values of a register are used that parameter may be omitted.

FTN treename (default A and B registers)
FTN treename 1/a-reg (default B register)
FTN treename 2/b-reg (default A register)

For non-default values include both parameters:

FTN treename 1/a-reg 2/b-reg
or

FTN treename 1/a-reg b-reg

Spaces should be used to separate components of the command line. The
bit values corresponding to the mnemonic parameters are given in Table
18-2.

Input/Output Specifications

Additional devices are accessible to users explicitly setting the A and
B registers. I/O is specified by the A-register setting as:

Type Bits

Input (source) 8-10
Listing 11-13
Binary (object) 14-16

The settings corresponding to I/O files and devices are given in Table
18-3.

1 8 - 9 November 1977

SECTION 18 PDR3057

Table 18-2. A-and B-register Bit Correspondences
of Parameter Mnemonics

(PRIME-supplied defaults are indicated)

A(x,y) = 0 (or 1): the mnemonic parameter causes the value of bits x and
y in the A register to be 0 (or 1).

B(x,y) = 0(or 1): same as above for the B register.

BIG
B[INARY]

DCLVAR
DEBASE
DYNM
ERRLIST
ERRTTY
EXPLIST
FP
I[NPUT]
INTL
INTS
LUSTING]

NOBIG
NODCLVAR
NOERRTTY
NOFP
NOTRACE
NOXREF
SAVE
S[OURCE]

SPO
TRACE
XREFL
XREFS
32R
64R
64V

B(8,9) - 1
A(14,15,16) = object file definition 0

PRIMOS BINARY command
B(16) = 1
A(6) = 1
B(3,8) = 1
A(3) = 1
A(7) = 1; default
A(2) = 1
B(15) = 0; default
A(8,9,10) = input file definition (see
B(10) = 1
B(10) = 0; default
A(11,12,13) = listing file definition

PRIMOS LISTING command
B(8,9) = 0; default
B(16) = 0
A(7) = 0
B(15) = 1
A(4) = 0; default
B(12,13) = 0; default
B(3) = 0; default
A(8,9,10) = input file definition (see

same as l[NPUT]
A(l) = B(16) = 1
A(4) = 1
B(13) = 1
B(12,13) = 1
A(5) = B(8) = 0; default
A(5) = 1
B(8) = 1

(see table 18-3)

table 18-3)

(see table 18-3)

table 18-3)

REV. # 18 - 10

PDR3057 OOMPIIER REFERENCE

Table 18-3. Bit/Device Correspondences

Bits Octal Device Mnemonic Parameter

NO

TTY

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

None

User terminal

Paper tape reader/punch

Reserved for card reader/punch

Reserved for line printer

Reserved for magnetic tape

Reserved

Disk (PRIMOS file system)

Disk (PRIMOS file system)

Defaults

Source

Listing

Binary

7

0

7

File System

None

File System

18 - 11 November 1977

SECTION 18 PDR3057

Reset (0) Set (1)

Default A Register Bit

0 0

0 < 0
.̂ 0

1(l ? (i
0 \ 0
*-0

-{!
0 0

0 { 0

0 < 0
^ 0

0 < 0
I 0

f°
0 < 0

*s 0

I 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

B register Bit

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SPO
LIST EXPLIST
LIST ERRLIST
NOTRACE TRACE
32R 64R

DEBASE
NOERRTTY ERRTTY

INPUT
SOURCE

LISTING

BINARY

SAVE DYNM

NOBIG,
NOBIG
INTS

NOXREF
NOXREF

32R

FP
NODCLVAR

BIG, DYNM, 64V
BIG
INTL

XREFS
XREFL, XREFS

NOFP
DCLVAR, SPO

Figure 18-1. Bit-Mnemonic Correspondence

(A and B Registers)

REV. 0 18 - 12

000
001
010
Oil
100
101
110
111

0
1
2
3
4
5
6
7

PDR3057 COMPILER REFERENCE

The values of these bits are:

Binary Octal Device

None
User terminal
Paper tape reader/punch
Reserved for card reader/punch
Reserved for line printer
Reserved for magnetic tape
Reserved
Disk (PRIMOS file system)

File Unit Usage

Three file units may be active during a compilation:

File Type PRIMPS file unit

Source 1

Listing 2
Object 3

If the disk is specified as the device for the listing and/or object file
FTN causes these files to be opened on the disk with default names con­
structed as follows:

If the source file has the treename

[MFD]>UFD1>. . . .>filename

the listing file and the object file will be opened

as]>filename and B*-filename respectively in the UFD currently attached
to. Upon completion of the FTN command all files are closed and command
returns to PRIMOS.

If the user desires the listing or binary files to have names other than
the default names, and/or to be opened in UFD's other than the current
one, this must be done prior to invoking the FTN command.

The PRIMOS Commands

LISTING Filename-2 opens a listing file with the specified name filename-2
(in the current UFD) on PRIMOS file unit 2. This inhibits FTN frem opening
a default listing file.

Note

Unless bits 11-13 of the A-register are set to '7,
nothing will be written into this file.

18 - 13 November 1977

SECTION 18 PDR3057

The listing output (s) of more than one source file can be concatenated if
all listings are generated prior to closing the listing file.

For example: LISTING filename

FTN

FTN

source-1 1/areg 2/breg

source-n 1/areg 2/breg

CLOSE ALL

(note: system responses are not printed in this example)

The listing file, filename, will contain the concatenation of all listing
outputs from source-1,..., source-n (for those compilations wherein list­
ings were specified).

BINARY filename-3 opens a binary (object) file with the specified name
filename-3 (in the current UFD) on PRIMDS file unit 3. This inhibits FTN
from opening a default object file.

Note

The default value of bits 14-16 of the A-register is
'7 - disk file system. If not using the default A-
register values be sure to set bits 14-16 to '7 or
nothing will be written into the object file. Object
files can also be concatenated in the same manner as
listing files.

If the BINARY or LISTING commands are used prior to FTN to establish non-
default file, then FTN does not close these files upon completion.

After FTN returns carmand to PRIMOS, these files should be closed by the
user by:

f 2 1 f 3

C[LOSE] ^f i lename-2> < f i lename-3

o r C [LOSE] ALL

REV. 0 18 - 14

PDR3057 SEG COMMAND REFERENCE

SECTION 19

SEG COMMAND REFERENCE

INTRODUCTION

A complete list of SEG commands is given in this section in
alphabetical order. The command level for each command is given, i.e.
it is a command of PRIMOS, SEG, SEG's Loader, or SEG's Modification
sub-processor (Modify). Along with the command level is a reference to
the Section of this manual where the command is discussed in detail.
Commands marked PMA are not discussed in this manual. See The PMA
PROGRAMMER'S GUIDE, PDR3059 for details.

Underlining shows the acceptable command abbreviations. Items in
brackets ([]) are optional.

1 9 - 1 November 1977

SECTION 19 PDR3057

SEG COMMANDS

ATTACH [ufd-name] [password] [ldisk] [key] Loader (Section 11)

Attaches to another UFD.

ufd-name is the name of the UFD to be attached to; omission is home
UFD.

password is password of UFD to be attached to if password-protected.

ldisk is logical disk on which MFD is to be searched for UFD
specified.

0 (or omitted) search logical disk 0
100000 search all logical disks
177777 search logical disk on which current

UFD is located

key is key for attach/set information.

0 attach to UFD; do not set home
1 attach to UFD; set home to new current UFD
2 attach to sub-UFD in current UFD; do not set home to

new current UFD
3 attach to sub-UFD in current UFD; set home to

new current UFD

A/SYMBOL sname [segtype] segno size Loader (Section 12)

Places a symbol and reserves 0 or more locations in memory for it.

sname is the name of the symbol

segtype is the type of segment either DATA or PROCEDURE; if
omitted, a data segment is assumed. If the segment does
not yet exist, it will be created.

segno is the absolute octal segment number

size is the number of locations (octal) to be reserved for the
symbol; if omitted 0 is assumed.

REV. 0 19

PDR3057 SEG COMMAND REFERENCE

COMMON ABS segno Loader (Section 11)

Specifies segment into which COMMON will be loaded.

segno is the absolute octal segment number into which COMMON will
be loaded.

COMMON REL segno Loader (Section 11)

Establishes a relative assignment number for segment(s) into which
COMMON will be loaded.

segno is the segment number into which COMMON will be loaded; it
is a small octal number.

DELETE [filename] SEG (Section 6)

Deletes saved SEG runfile with name filename. If filename is omitted
the established runfile is deleted.

D/xx Loader (Section 11)

Perform load operation with same numeric parameters as previous load
command.

xx represents one of the load commands: LOAD, LIBRARY, RL,
PL, IL.

F F F
D/ may be combined with P/ as either D/P/xx or #/D/xx

EXECUTE [1/a-reg] [2/b-reg] [3/x-reg] Loader (Section 6)

First SAVEs the program with the register settings specified by the
user or the default values if the register setting is not specified.
It then executes the program. After execution command is returned
directly to PRIMOS. The default values are almost always used.

a-reg initial value of A register
b-reg initial value of B register
x-reg initial value of X register

1 9 - 3 November 1977

SECTION 19 PDR3057

F/xx [filename] [addr psegno lsegno] Note 1. Loader (Section 12)

F/S/xx [filename] [addr psegno lsegno] Note 2. Loader (Section 12)

Forceloads all routines in a object file.

xx is one of the load commands LOAD/ LIBRARY, RL, PL, or IL.
filename is the object file to be forceloaded.

xx filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted PFTNLB and

IFTNLB forceloaded)

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

Notes

1. Simple forceload of object file.

psegno relative assignment number of segment into which procedure
is to be loaded.

lsegno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used.

2. Forceload of object file to specific segments

psegno absolute octal number of segment into which procedure is to
be loaded.

lsegno absolute octal number of segment into which link frame is
to be loaded.

F/S/xx may be written S/F/xx

F/ may also be combined with D/ or P/ as D/F/xx (or F/D/xx) or P/F/xx
(or F/P/xx).

REV. 0 19

PDR3057 SEG COMMAND REFERENCE

HELP SEG (Section 6)

Prints a list of the SEG commands at the user's terminal.

IL [addr psegno Isegno] Loader (Section 12)

Loads the impure FORTRAN library IFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

psegno relative assignment number of segment into which procedure
is to be loaded.

Isegno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

INITIALIZE [filename] Loader (Section 11)

Initializes SEG's loader and restarts it.

filename is name of SEG runfile to be initialized and/or opened. If
omitted the established runfile name is used.

LIBRARY [filename] [addr psegno Isegno] Loader (Section 6,11,12)

Loads a library file from UFD=LIB.

filename is the name of the library file to be loaded; if omitted
the FORTRAN library files PFTNLB and IFTNLB are loaded.

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

psegno relative assignment number of segment into which procedure
is to be loaded.

1 9 - 5 November 1977

SECTION 19 PDR3057

Isegno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

LOAD synonym for VLOAD
LOAD _̂ synonym for VLOAD ^_

LOAD filename [addr psegno Isegno]

Loads a binary file.

SEG
SEG

Loader (Section 6,11,12)

filename is the name of the binary file to be loaded.

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

psegno relative assignment number of segment into which procedure
is to be loaded.

Isegno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or Isegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

MAP filename-1 [filename-2] map-option
MAP * [filename-2] map-option

Note 1. SEG (Section 11)
Note 2. SEG (Section 11)

Prints specified loadmap of SEG runfile to user's terminal or to a
file.

filename-1 name of SEG runfile for which map is to be generated.

filename-2 name of file into which map is to be written. If
omitted, map is printed at user's terminal.

REV. 0 19

PDR3057 SEG COMMAND REFERENCE

map-option type of loadmap to be generated

0(or omitted) Full map
1 Extent map only
2 Extent map and base areas
3 Undefined symbols
4 Full map (identical to 0)
5 System programmer's map
6 Undefined symbols, alphabetical order
7 Full mapf sorted alphabetically.

Notes

1. used to get a loadmap of a runfile other than the established
runfile.

2. used to get a loadmap of the established runfile.

MAP [filename] map-option Loader (Section 6,11)

Prints a loadmap of currently established runfile to user's terminal or
to a file.

filename is name of file into which load map is to be written; if
omitted, map is printed at user's terminal.

map-option is the type of loadmap to be generated. Map-options are
the same as in SEG's MAP command.

MODIFY [filename] SEG (Section 11)

Invokes the modification sub-processor.

filename is the name of the SEG runfile to be processed; if omitted
the established runfile is used.

1 9 - 7 November 1977

SECTION 19 PDR3057

NEW filename Modify (Section 11)

Duplicates all portions of the established runfile resident above
segment '4000, under the specified new name. The full map and all
references to segments below '4000 are preserved.

filename is the name of the new SEG runfile which is to be
created.

OPERATOR option Loader

Allows creators of specialized software to override basic restrictions
in SEG's loader. Its use is dangerous unless the programmer is very
careful. It is not considered to be useful for the applications
programmer. The actual implementation of OPERATOR may change from
revision to revision and it is not considered to be a supported
function of SEG.

Function

0 reinstate restrictions
1 relax restrictions

PATCH segno baddr taddr Modify (PMA Manual)

Modifies the save range of an existing segment. Writes to the disk the
portion of the runfile specified as patched. It may not be used with
specifically addressed segments.

segno is absolute octal number of patched segment

baddr is lowest octal location of the patch

taddr is highest octal location of the patch

PL [addr psegno 1segno] Loader (Section 12)

Loads the pure FORTRAN library PFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

REV. 0 19

PDR3057 SEG COMMAND REFERENCE

psegno relative assignment number of segment into which procedure
is to be loaded.

1segno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

PSD SEG (PMA Manual)

Invokes the VPSD debugging utility.

P/xx [filename] option [psegno lsegno] Loader

Loads an object file on a page boundary. A page boundary is an address
of the form 'yy000 where yy is an even number.

xx is a load command: LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

xx filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted, PFINLB and IFTNLB

are loaded)

option determines what shall be loaded

PR load only procedure on a page boundary
DA load only link frames on a page boundary
(omitted) load both procedure and link frames on a page boundary

psegno absolute octal number of segment into which procedure will be
loaded.

lsegno absolute octal number of segment into which link frames will
be loaded.

Default segments will be those of the current procedure and/or link
frame pointers; if necessary SEG will create new segments. If either
PR or DA is specified for option, loading in the non-specified segment
begins at its current load point. Only the first routine in the file
is placed on a page boundary.

1 9 - 9 November 1977

SECTION 19 PDR3057

P/ may be compounded with F/ to forceload on a page boundary as F/P/xx
or P/F/xx (See F/xx.)

QUIT SEG (Section 6)

Returns user to PRIMOS command level.

QUIT Loader (Section 6)

Returns user to PRIMOS command level. Does not SAVE runfile.

RESTORE [filename] SEG (PMA Manual)

Restores a SEG runfile to user memory.

filename is the SEG runfile to be restored; if omitted the
" established runfile is used.

RESUME [filename] SEG (Section 11)

or

RESUME [filename] SEG (Section 11)

Restores runfile to memory, if necessary, and then executes it.

filename is the name of the SEG runfile; if omitted the established
runfile is used.

RETURN Loader (Section 12)

Returns the user to the SEG command level. Unlike the RETURN command
in the Modification sub-processor this command does not SAVE the
runfile.

REV. 0 1 9 - 1 0

PDR3057 SEG COMMAND REFERENCE

RETURN Modify (Section 11)

Writes entire runfile to disk and then transfers control to the SEG
command level.

RL filename [addr psegno lsegno] Loader (Section 11, 12)

Logically replaces a binary subprogram in the established runfile.

filename is the name of the module to be replaced.

addr is the starting address in psegno for the procedure part of
the binary file. If 0 is specified, the current PBRK is
used.

psegno relative assignment number of segment into which procedure
is to be loaded.

lsegno relative assignment number of segment into which link
frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

R/SYMBOL sname [segtype] segno size Loader (Section 11)

Places a symbol and reserves 0 or more locations in memory for it.

sname is the symbol name

segtype is the type of segment, either DATA or PROCEDURE; if
omitted a data segment is assumed.

segno is relative segment reference number. If 0, the first
available segment of current type is used. If segment does
not yet exist, a new segment will be created.

size is number of locations to be reserved for the symbol; if
omitted; 0 is assumed.

SAVE synonym for MODIFY SEG

19 - 11 November 1977

SECTION 19 PDR3057

SAVE [1/a-reg] [2/b-reg] [3/x-reg] Loader (Section 6)

SAVEs the result of the load by writing all buffers to the disk and
setting the stack into the first available segment (unless the user has
specified the stack with the loader's ST command). The user has the
option of setting the initial register values, but this is rarely ever
done.

a-reg value of A register to be saved
b-reg value of B register to be saved
x-reg value of X register to be saved

SEG filename Note 1. PRIMOS (Section 7)
SEG Note 2. PRIMOS (Section 6)
SEG filename 1/1 Note 3. PRIMOS (PMA Manual)
SEG 1/1 Note 4. PRIMOS (PMA Manual)

Invokes the segmented-address runfile utility.

Notes

1. filename is the name of the SEG runfile to be executed.

Loads the runfile into memory and starts execution.

2. Accesses the SEG commands to load, modify, and/or execute a SEG
runfile.

3. filename is the name of the SEG runfile restored to memory prior
to transfer of control to the VPSD debugging utility. Control
may be returned to SEG by VPSD's Q or QU command and the program
may then be executed.

4. Allows the currently existing memory image to be examined and/or
modified with the VPSD debugging utility. , Control may be
returned to SEG by VPSD's Q or QU command but the resulting
memory image cannot be executed at the SEG command level.

SHARE [filename] SEG (Section 12)

Converts portions of the SEG runfile corresponding to segments below
'4001 into R-mode-like runfiles.

filename is the name of the SEG runfile which is to be split out for
sharing. If omitted, the established runfile will be used.

SEG responds to the SHARE command by asking for a two-character ID as:

REV. 0 1 9 - 1 2

PDR3057 SEG COMMAND REFERENCE

TWO CHARACTER FILE ID:

A separate runfile is created for each segment below '4001; the
filenames are the two-character ID followed by the (octal) segment
number.

SINGLE [filename] segno SEG (Section 12)

Creates an R-mode-like runfile for specified segment number.

filename is the name of the SEG runfile from which an R-mode runfile
is to be split. If omitted, the established runfile is
used.

segno is the absolute octal number of the segment for which the
R-mode runfile is to be created.

SEG responds to the SINGLE command by asking for a two-character ID as:

TWO CHARACTER FILE ID:

The R-mode runfile is created with a filename composed of the
two-character ID followed by the (octal) segmemt number specified.

SK ssize Note 1. Modify (Section 11)
SK segno addr Note 2. Modify (Section 11)
SK ssize 0 segno Note 3. Modify (Section 12)
SK ssegno addr segno Note 4. Modify (Section 12)

Notes

1. Specifies stack size

ssize is minimum required stack size in octal words; if 0 is
specified, the default value of '6000 is used, ssize =
177774 reserves an entire segment for the stack.

2. Specifies stack location

segno is absolute octal segment number for the stack.

addr is octal starting address for the stack in the specified

19 - 13 November 1977

SECTION 19 PDR3057

segment, addr must be at least 4; locations 0 to 3 must
be reserved with R/SY.

3. Specifies stack size and segment for extension stack

ssize is minimum size of stack to be allocated.

segno is absolute octal number of first segment available for the
extension stack.

4. Specifies primary stack location and segment for extension
stack

ssegno is absolute octal number of segment in which stack begins.

addr is octal starting location of stack in starting segment.

segno is absolute octal number of first segment available for
extension stack.

In 3 and 4, the extension stack-frame begins in segno followed by
segno+1, segno+2, etc., if needed.

At least '15 (12) words must be available in the starting stack
segment.

SPLIT segno addr Note 1. Loader (Section 12)
SPLIT addr Note 2. Loader (Section 12)
SPLIT addr ssegno saddr esegno Note 3. Loader (Section 12)

Breaks a segment into procedure (lower) and data (upper) portions.

segno is the absolute octal number of the segment to be split.

addr is the octal location of the split in the segment, addr
must be a multiple of '4000.

Notes

1. Splits segment as specified.

2. Splits segment '4000 and loads R-mode interlude program RUNIT
starting at location '4000.

REV. 0 1 9 - 1 4

PDR3057 SEG COMMAND REFERENCE

3. Splits segment '4000, loads RUNIT and supports extension stacks.

addr is address (octal) of split in segment '4000.

ssegno is absolute octal number of segment in which stack will
begin.

saddr is address (octal) at which stack begins in ssegno

esegno is absolute octal number of first segment available for
stack extensions.

At least '15 (12) words must be available in the starting stack
segment.

STACK ssize Loader (Section 11)

Sets the minimum stack size.

ssize is the minimum required stack size (octal). ssize =
'177774 forces use of an entire segment for the stack.

START segno addr Modify (Section 11)

Sets a new address for start of execution.

segno is the absolute octal segment number.

addr is the new ECB address word (octal) in the specified
segment for start of execution.

SYMBOL [sname] segno addr Loader (Section 11)

Defines a symbol at a specific location in memory (actually an entry in
the symbol table). SYMBOL may only be used to define a symbol before
it is referenced. It cannot be used to define initialized COMMON or to
satisfy unsatisfied references.

sname is the symbol name

segno is the absolute octal segment number in which the symbol is
to be located.

addr is the octal address of the symbol in segno.

19 - 15 November 1977

SECTION 19 PDR3057

S/xx [filename] addr psegno Isegno Loader (Section 12)

Loads an object file to specified absolute segments.

xx is a load command LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

xx filename

LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted, PFTNLB and IFTNLB are loaded)

addr i s the s t a r t ing load address (octal) in the procedure
segment. If 0 i s specified, loading s t a r t s a t the current
pointer posi t ion (PBRK).

psegno i s the absolute octal segment for loading procedure.

Isegno i s the absolute octa l segment for loading the l ink frames.

If segments do not already e x i s t , they wil l be created.

S/ may be combined with F/ as ei ther S/F/xx or F/S/xx.

TIME [filename] SEG (Section 11)

Pr in ts a t u se r ' s terminal , time of creation or l a s t saved modification
of the runf i l e .

filename i s the SEG runf i le name; if omitted the established
runfi le i s used.

REV. 0 1 9 - 1 6

PDR3057 SEG COMMAND REFERENCE

VLOAD [filename] SEG (Section 6)

Accesses the SEG loader.

filename name of SEG runfile; if omitted established runfile is
used. If filename is name of an existing SEG runfile, that
runfile is initialized.

VLOAD * [filename] SEG (Section 11)

Accesses the SEG Loader, preserving the contents of the specified
runfile.

filename is the name of the SEG runfile to be accessed; if omitted
the established runfile is used.

WRITE Modify (PMA Manual)

Rewrites to the disks all segments of the established runfile above
segment '4000.

If NEW is given before WRITE the segments will be written into the new
runfile otherwise the established runfile name will be used.

XPUNGE dsymbol dbase Loader (Section 12)

Expunges some or all defined symbols from the symbol table,

dsymbol Action

0 delete only entry points, leaving COMMON areas
1 delete all defined symbols, including COMMON areas

dbase Action

0 retain all base information
1 retain only sector zero information
2 delete all base area information

XP dsymbol is equivalent to XP dsymbol 0
XP is equivalent to XP 0 0

19 - 17 November 1977

PDR3057 LIBRARIES REFERENCE

SECTION 20

LIBRARIES REFERENCE

FORTRAN FUNCTION LIBRARY

The following functions are available to perform mathematical and logi­
cal operations. These functions are part of the FTNLIB library file
for the R-identity and the PFTNLB and IFTNLB library files for the
V-identity. The data mode(s) expected in the argument list and the data
mode of the value returned are shown for each function in the list. The
following abbreviations are used:

CP Complex number

DP Double-precision floating-point
number

I Integer (short or long)

J Integer (long)

SP Single-precision floating-point
number

Additional detail on the functions themselves (rather than their opera­
tions) will be found in REFERENCE GUIDE, SOFTWARE LIBRARY, PDR3106.

Mixing Long and Short Integers

Short integers occupy one word of memory, long integers two words. When
long integers are converted to short integers, the 16 low order bits of
the long integer are stored in the short integer. When a short integer
is converted to a long integer, the low order word is set equal to the
short integer; the high order word is sign-extended (padded with 0's or
l's according to the sign of the short integer, + or -) . «. If it is
necessary, in a program, to convert between integer modes, it is strong­
ly recommended that this be done with the intrinsic functions: INTL,
INTS. (In the following, it is assumed that all variable names beginning
with I have been declared to be short integers and all variable names
beginning with J as long integers.)

To convert between integer modes, use:

J = INTL (I)

I = INTS (J)

2 0 - 1 November 1977

SECTION 20 PDR3057

If A long-(or short) integer is assigned the value of a short (or long)
integer, mode conversion will also occur. This is not considered to be
good programming practice and is discouraged. (See Assignment State­
ments in Section 16.)

In functions which accept mixtures of short and long integers in the
argument list, the short integers will be internally converted to long
integers (with sign-extension) and the value determined. The value will
be Calculated as a long integer. For these functions it is recommended
that the left-hand side of the assignment statement be a long integer.
Conversion to a short integer should be explicit, not implicit.

JX = AND (JA, JB, IC)

is less desirable than

JX = AND (JA, JB, INTL (IC))

and

IY = AND (JA, JB, IC)

is less desirable than

IY = INTS (AND (JA, JB, INTL (IC)))

In general, the logical functions AND, OR, and XOR and the minimum/
maxiimjim functions will return a long integer if any of the arguments
are long integers. The NOT function returns an integer of the same mode
as its argument. The shifting and truncating functions LS, LT, RS, RT,
and SIjIFT return an integer of the same mode as their first argument,
that is, the integer on which shifting and/or truncation is to take
place.

FORTRAN Functions

ABS Calculates the absolute value of the argument.
SP = ABS (SP)

AIMAG Converts the imaginary part of a complex number to a single-
precision floating-point number.
SP = AIMAG (CP)

AINT Truncates a single-precision floating-point number to a single-
precision floating-point number whose value is integral.
SP = AINT (SP)

ALOG Computes the natural logarithm (base e) of the argument. If
the argument is not positive, the error LG is generated.
SP = ALOG (SP)

ALOG10 Computes the base-10 logarithm of the argument. If the argu­
ment is not positive, the error LG is generated.
SP = ALOG10 (SP)

REV. 0 20-2

PDR3057 LIBRARIES REFERENCE

AMAXO Finds the maximum value in a variable list of integers. The
list may be a mixture of long and short integers.
SP = AMAXO (II,12,...,In) (In Uiu V iQuiLLLJy, 2̂ iiĵ 4) •

AMAX1 Finds the maximum value in a variable list of single-precision
floating-point numbers.
SP = AMAXl (SPl,SP2,...,SPn) (In Lhc; V^idmiLLLyT—2fn^A)-J^

AMINO Finds the minimum value in a variable list of integers. The
list may be a mixture of long and short integers.
SP = AMINO (II,12,...,In)

AMINl Finds the minimum value in a variable list of single-precision
floating-point numbers.
SP = AMINl (SP1,SP2,... ,SPn) ̂ 3^F^^^-!t^entdrty7-^5^=^

AMOD Computes the remainder when one single-precision floating­
point number (SPl) is divided by another (SP2).
SP = AMOD (SP1,SP2)

AND Performs a logical AND operation, bit by bit, on a variable
list of integers, long and/or short.
I = AND (II,12,...,In)

ATAN Calculates the principal value, in radians, of the arctangent
of the argument.
SP = ATAN (SP)

ATAN2 Calculates the principal value, in radians, of the arctangent
of one single-precision floating-point number (SPl) divided
by another (SP2). If both arguments are zero, the error mes­
sage AT is generated.
SP = ATAN2 (SP1,SP2)

CABS Computes the absolute value of a complex number, returning a
single-precision floating-point number as the result.
SP = CABS (CP)

CCOS Computes the cosine of a complex number.
CP = CCOS (CP)

CEXP Calculates the exponential of a complex number.
CP = CEXP (CP)

CLOG Calculates the natural logarithm (base e) of the argument.
CP = CLOG (CP)

CMPLX Converts two single-precision floating-point numbers into a
complex number. The first argument becomes the real part of
the complex number; the second argument becomes the imaginary
part.
CP = CMPLX (SP1,SP2)

2 0 - 3 November, 1977

SECTION 20 PDR3057

CONJG Computes the conjugate of a complex number.
CP = CONJG (CP)

COS Computes the cosine of a single-precision floating-point
number.
SP = COS (SP)

CSIN Computes the sine of complex number.
CP = CSIN (CP)

CSQRT Calculates the square root of a complex number.
CP = CSQRT (CP)

DABS Computes the absolute value of a double-precision floating­
point number.
DP = DABS (DP)

DATAN Computes, in radians, the principal value of the arctangent of
the argument.
DP = DATAN (DP)

DATAN2 Calculates the principal value, in radians, of the arctangent
of one double-precision floating-point (DPI) divided by an­
other (£IP2) . If both arguments are zero, the error message DT
is generated.
DP = DATAN2 (DPI,DP2)

DBLE Converts a single-precision floating-point number to a double-
precision floating-point number.
DP = DBLE (SP)

DCOS Computes the cosine of a double-precision floating-point
number.
DP = DCOS (DP)

DEXP Ccmputes the exponential of a double-precision floating-point
number.
DP = DEXP (DP)

DIM Computes the positive difference between two single-precision
floating-point numbers.
SP = DIM (SP1,SP2)

DINT Truncates the fractional part of a double-precision floating­
point number.
DP = DINT (DP)

DLOG Ccmputes the natural logarithm (base e) of a double-precision
floating-point number. If the argument is not positive, the
error message DL is generated.
DP = DLOG (DP)

REV. 0 2 0 - 4

PDR3057 LIBRARIES REFERENCE

DL0G2 Computes the base-2 logarithm of a double-precision floating­
point number. If the argument is not positive, the error
message DL is generated.
DP = DL0G2 (DP)

DLOG10 Ccmputes the base-10 logarithm of a double-precision floating­
point number. If the argument is not positive, the error
message DL is generated.
DP = DLOG10 (DP)

DMAXl Finds the maximum value among a variable list of double-
precision floating point numbers.
DP = DMAXl (DPl,DP2,...,DPn) (fe-V-idfcmtity, 2<ipz&

DMIN1 Finds the minimum value among a variable list of double-
precision floating-point numbers.
DP = DMIN1 (DPl,DP2,...,DPn) Xl^-y=40antity, 2^n^~

DMOD Ccmputes the remainder when one double-precision floating-point
number (DPI) is divided by another (DP2). If DP2 is zero, the
error message DZ is printed.
DP - DMOD (DP1,DP2)

DSIGN Combines the magnitude of one double-precision floating-point
number (DPI) with the sign of a second (DP2) .
DP = DSIGW (DPI,DP2)

DSIN Ccmputes the sign of a double-precision floating-point number.
DP = DSIN (DP)

DSQRT Ccmputes the square root of a double-precision floating-point
number. If the argument is negative, the error message SQ is
generated.
DP = DSQRT (DP)

EXP Computes the exponential of a single-precision floating-point
number. If there is an exponent underflow or overflow, the
error message EX is generated. "5>P= £^X^ (^P)

FLOAT Converts an integer to a single-precision floating-point number.
The function will accept either a short or a long integer as the
argument
SP = FLOAT (I)

IABS Computes the absolute value of an integer. The argument may be
either a long or short integer.
I = IABS (I)

IDIM Computes the positive difference between two integers. The
function will accept any mixture of short and long integers.
I = IDIM (11,12)

IDINT Converts a double-precision floating-point to an integer.
I = IDINT (DP)

2 0 - 5 November 1977

SECTION 20 PDR3057

IFIX Converts a single-precision floating-point number to an integer.
INT Both functions are included in the library to ease conversion

from other systems.
I = IFIX (SP)
I = INT (SP)

INTL Converts its argument to a long integer.
J = INTL (I)

INTS Converts its argument to a short integer.
I = INTS (J)

IRND Invokes the random number generator
12 = IRND (II)

II Operation 12

>0 Initializes the random number
generator 12 = II

=0 Generates a randan number 0<I2<32767

<0 Initializes the random number
generator and returns the first

random number

0<I2<32767

ISIGN Combines the magnitude of one integer
second (12) ,
I = ISIGN (11,12)

(II) with the sign of a

LOC Generates an integer value representing the memory address where
the argument of LOC is located. The argument may be a constant,
variable or array name, or a subscripted array element.

I = LOC

r constant
J variable name
j array name
L array element.

Note

LS

In the 64V mode, LOC may be passed as an argu­
ment in functions or subroutines/ e.g., I =
AND (LOC (A), LOC (B)) . In this mode, LOC returns
a two-word value: the first word represents
the segment number; the second is the word num­
ber in the segment.

Shifts an integer variable left by a specified number of bits;
vacated bits are filled with zeroes,
12 = LS (II, IP)
where IP is the number of bits to be shifted to the left. If
IP<0, this is equivalent to the RS function with IP = -IP. If
IP = 0, no change is made to the integer.

REV. 0 20-6

PDR3057 LIBRARIES REFERENCE

LT Preserves a specified number of left-most bits and sets the
rest to zero, (left truncation) . Saves the first IP from the
left and sets the rest of the bits to zero. If IP<0, the
entire integer is set to zero.
12 = LT (II,IP)

MAXO Finds the maximum value among a variable list of integers,
(see AMAXO) (In V-M^UJJ^y-J^ugijr-
I = MAXO (11,12,... ,In)

MAXl Finds the maximum value among a variable list of single-precision
floating-point numbers and converts it to an integer. (In V" -
JaViil i ly7-2TnT4T—
I = MAXl (SPl,SP2,,.,,SPn)

MLNO Finds the minimum value among a variable list of integers,
(see AMINO) . CXti \fr-iCtemLlL.y, 2**t*ty-
I = MINO (II, 12,...,In)

MINI

MOD

NOT

Finds the minimum value among a variable list of single-precision
floating-point numbers and converts it to an integer (see AMINl)

I = MINI (SPl,SP27.7.,SPn)

Computes the remainder when one integer (II) is divided by
another (12) .
I = MOD (11,12)

Performs a logical NOT operation l's complement) on its argu­
ment,
I = NOT (I)

OR Performs a logical (inclusive) OR operation on two integers.
I = OR (11,12)

REAL Converts the real part of a complex number to a single-precision
floating-point number.
SP = REAL (CP)

RND Invokes the random number generator.
SP = RND (I)

I*
>0

=0

<0

Operation

I n i t i a l i z e s the random number
generator

Generates a random number

I n i t i a l i z e s the random number

<2&

SP = FLOAT (I)

0.0<SP<L.O

0.0<SP<1.0
generator and returns the first

random number

20 November 1977

file:///fr-iCtemLlL.y

SECTION 20 PDR3057

RS Shifts an integer variable right by a specified number of bits;
vacated bits are filled with zeroes.
12 = RS (II,IP)
where IP is the number of bits to be shifted to the right. If
IP<0, this is equivalent to the LS function with IP = -IP. If
IP = 0, no change is made to the integer.

RT Preserves a specified number of right-most bits and sets the
rest to zero (right truncation) . Saves the first IP bits frem
the right and sets the rest of the bits to zero. If IP<0, the
entire integer is set to zero.
12 = RT (II,IP)

SHFT Performs logical shift operations on integer variables.
1. IS = SHFT (I)

In this form, the variable is unchanged and the value is
the variable itself; this form has no real use.

2. IS = SHFT (I,IP1)
performs a shift operation on the variable. If IP1>0, the
shift is to the right; if IP1<0, the shift is to the left;
if IPl = 0, no shift occurs. This form is equivalent to
the RS and LS functions.

Operation Function Equivalent SHFT function

Right shift RS (I,IP) SHFT (I,IP)
Left shift LS (I,IP) SHFT (I,-IP)
Right truncate RT (I,IP) SHFT (I,IP-16,16-IP)
Left truncate LT (I,IP) SHFT (I,16-IP,IP-16)

3. IS = SHFT (I,IPl, IP2) •
performs two shift operations, first by IPl (setting zeroes
in vacated bits), then by IP2 (setting zeroes in vacated
bits) . The sign of IPl and IP2 determine the direction of
the shift while their magnitude determine the number of bits
to be shifted. As seen above, the RT and LT functions are
equivalent to special forms of SHFT with three arguments.

SIGN Combines the magnitude of one single-precision floating-point
number (SPl) with the sign of a second (SP2) .
SP = SIGN (SP1,SP2)

SIN Computes the sine of a single-precision floating-point number.
SP = SIN (SP)

SNGL Converts a double-precision floating-point number to a single-
precision floating-point number.
SP = SNGL (DP)

SQRT Computes the square root of a single-precision floating-point
number.
SP = SQRT (SP)

REV. 0
2 0 - 8

PDR3057 LIBRARIES REFERENCE

TANH Canputes the hyperbolic tangent of a single-precision floating­
point number.
SP = TANH (SP)

XOR Performs a logical exclusive OR on a variable list of integers.
I = XOR (II, 12,...,In)

2 0 - 9 NOVEMBER 1977

SECTION 20 PDR3057

FORTRAN MATRIX (MATH) LIBRARY

The following subroutines are available to the user for matrix manipula­
tion, solution of sets of linear equations and generation of combinations
and permutations. In the subroutines whenever the mode of an argument is
explicitly specified as integer it is taken to be a short integer (indexes,
error flags, etc.). However, the mode of the matrix elements for integer
matrices may be either long or short integers. This library exists only
in the R-mode version; the library file name is MATHLIB.

Matrix Operations Subroutines

COMB

CALL COMB (iccmb,n,nr,iwl,iw2,iw3,last[,restrt])

COMB computes the next combination of nr out of n elements with a single
interchange each time it is called. The first call to COMB returns the
combination 1,2,3,...,nr. This subroutine is self-initializing and pro­
ceeds through all n!/(nr!*(n-nr)!) combinations. At the last combination,
it returns a value of last = 1 and resets itself. The COMB subroutine may
be re-initialized by the user by passing a new value of n and/or nr or by
passing the restrt parameter with a value of 1. (The restrt parameter is
optional; if re-initialization is not desired either omit this parameter
from the calling sequence or set it to a value of 0.)

Argument

icomb
n
nr
iwl
iw2
iw3
last
restrt

Mode

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Subscript(s)

1

1
1
1

Dimension(s)

nr

n
n
n

Comments

return
pass
pass
work
work
work
return
pass (optional)

The calling program should not attempt to modify icomb, iwl, iw2, or iw3,
For further details see:

"Loopless Algorithms for Generating Permutations, Combinations,
and Other Combinatorial Configurations," Gideon Ehrlich, Jour­
nal of the ACM, 20, No3 (July 1973) pp. 5000-5113.

Note

COMB is not loopless

LINEQ, CLINEQ, DLINEQ

CALL LINEQ (xvect, yvect, cmat, work, n, npl, ierr)

20 - 10
PEV. 0

PDR3057 LIBRARIES REFERENCE

(This is the form for single precision numbers; for complex and double-
precision numbers, use CLINEQ and DLINEQ respectively.) Solves the set
of n linear equations in n unknowns represented by

(cmat) (xvect) = (yvect)

where CMAT is the nxn square matrix of coefficients, wect is the nxl col­
umn vector of constants, and xvect is the nxl column vector of unknowns in
which the solution is stored. The user is required to provide as a work
area, a nplxnpl matrix work (npl = n+1) . The integer error flag ierr re­
turns one of three possible values.

ierr

0
1
2

solution found satisfactorily
Coefficient matrix singular
npl ̂ n+1

If ierr ̂ 0 no modifications are made to xvect.

Argument Mode Subscript(s)

xvect
yvect
cmat
n
work
npl
ierr

*

*
*

Integer
*

Integer
Integer

Dimension(s)

n
n
n,n

npl,npl

Comments

returned
passed
passed
passed
work
passed (=n+l)
returned

* all of the same mode which determine the subroutine used.
• • • • • • • • • • • • • • • • . — — — ^ i ^ — • • i i . M I • — ^ - ^ — — ^ - i n • • • • • • • • - • • • • • • — — — m m

MADD, CMADD, DMADD, IMADD

CALL MADD (mats, matl, mat2, n, m)

(This is the form for single precision number, for integer, complex, and
double-precision numbers use IMADD, CMADD, and DMADD respectively) . MADD
adds the nxm matrix mat2 to the nxm matrix matl and returns the sum in a
nxm matrix mats. In component form:

mats (i,j) = matl (i,j) + mat2 (i,j)

as i goes from 1 to n and j goes from 1 to m.

Argument Mode Subscript (s) Dimension (s)

mats
matl
mat2
n
m

*

*
*

Integer
Integer

n,m
n,m
n,m

Comments

returned
passed
passed
passed
passed

* all of the same mode which determines the subroutine used.

20 - 11 November 1977

SECTION 20 P™3057

MATXT, CMADJ, DMADJ, IMADJ

CALL MADJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

(This is the form for single precision numbers. For integer, complex, or
double-precision numbers use IMADJ, CMADJ or DMADJ respectively) .

The subroutine calculates the adjoint of the nxn matrix mati and stores it
in the nxn matrix mato. Each element of the output matrix is the signed
cof actor of the corresponding element of the input matrix. The error flag,
ierr, may have one of two values.

ierr

0
1

adjoint successfully constructed
n<2 - no adjoint may be constructed

Note

Argument

mato
mati
iwl
iw2
iw3
iw4
ierr

* all of

mato and mati must be distinct.

Mode

*

*
*
*
*
*

Integer

the same

Subscript(s)

2
2
1
1
1
1

Dimension(s)

n,n
n,n
n
n
n
n

mode which determines the

Comments

returned
passed
work
work
work
work
returned

subroutine used.

MCOF, CMCOF, DMCOF, IMCOF

CALL MCOF (cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

(This is the form for single precision numbers. For integers, complex, or
double-precision numbers use IMCOF, CMCOF, or DMCOF respectively). Calcu­
lates the signed cof actor of the element mat (i, j) of the nxn matrix mat
and stores this value in cof. If i = 0 and j = 0, the determinant of mat
is calculated. The integer error flag ierr has two possible values.

ierr

0 cofactor calculated successfully
1 no cofactor calculated for any of the following reasons

1.• n<2 - no cofactor possible
2. i = j = n = 0 - n o determinant
3. i = 0 and j ̂ 0 or i ̂ 0 and j = 0
4. i>n and/or j>n - subscript error

- subscript error

REV. 0 20 - 12

PDR3057 LIBRARIES REFERENCE

Argument

cof
mat
n
iwl
iw2
iw3
iw4
i
3
lerr

* all of

Mode

*

*

Integer
*
*
*
*

Integer
Integer
Integer

the same

Subscript(s)

2

1
1
1
1

Dimension(s)

mode which determines

n,n

n
n
n
n

the

Comments

returned
passed
passed
work
work
work
work
passed
passed
returned

subroutine used.

MCON, CMCON, DMCON, IMCON

CALL MCON (mat, n, m, con)

(This is the form for single-precision numbers. For integer, complex, or
double-precision numbers use IMCON, CMCON, or. DMCON respectively). This
subroutine sets every element of the nxm matrix mat equal to a constant
con.

Argument

mat
n
m
con

* all of

Mode

*

Integer
Integer

*

the same

Subscript(s) Dimension(s)

2 n,m

Comments

returned
passed
passed
passed

mode which determine which subroutine is used.

MDET, CMDET, DMDET, IMDET

CALL MDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)

(This is the form for single-precision numbers. For integer, complex, or
double-precision numbers use IMDET, CMDET, or DMDET respectively). This
subroutine calculates the determinant of the nxn matrix mat and stores it
in det. The integer error flag ierr may have one or two values.

ierr

determinant formed successfully
n = 0 - no determinant possible

20 - 13
November 1977

SECTION 20 PDR3057

Argumen

det
mat
n
iwl
iw2
iw3
iw4
lerr

* all

t Mode

*

*

Integer
*
*
*
*

Integer

of the same

Subscript(s)

2

1
1
1
1

Dimension (s)

n,n

n
n
n
n

Comments

returned
passed
passed
work
work
work
work
returned

mode which determine the subroutine used.

MTDN, CMIDN, DMIDN, IMIDN

CAii MIDN (mat, n)

(This is the form for single-precision numbers. For integer, complex, or
double-precision numbers use IMIDN, CMIDN, or DMIDN respectively) .

This subroutine sets the nxn matrix mat equal to the nxn identity matrix.
That is,

mat (i,j) = <5ij

where 6ij = 0 i / j
1 i = j

Argument

mat
n

Mode

Integer

Subscript (s) Dimensions) Comments

2 n,n returned
passed

* the mode of this argument determines which subroutine is used
and the representation of 1 in the matrix.

MENV, CMQW, DMINV

CALL MINV (mato, mati, n, work, npl, npn, ierr)

(This is the form for single-precision numbers. For complex or double-
precision numbers use the subroutines CMINV or DMENV respectively. There
is no integer form of this subroutine as there is no guarantee that the
inverse of an integer matrix will be an integer matrix) . Calculates the
inverse of the nxn matrix mati and stores it in ma to if successful. (The
inverse of mati is mato if and only if

mati*mato = mato*mati = I

where * denotes matrix multiplication and I is the nxn identity matrix) ,
The user must supply a npl x npn scratch matrix work, where npl = n+1 and
npn = n+n. The integer error flag ierr will return one of the following
values.

BEV. 0 20 - 14

PDR3057 LIBRARIES REFERENCE

lerr

0
1

matrix inverted - inverted matrix stored in mato.
matrix is singular - no inversion possible, mato is filled
with zeroes.
npl ^ n+1 and/or npn ^ n+n - return from subroutines with
no calculations performed.

Argument

mato
mati

n
work

npl
npn
lerr

Mode

*

*
Integer

*
Integer
Integer
Integer

Subscript(s)

2
2

2

Dimension(s)

n,n
n,n

npl,npn

Comments

returned
passed
passed
work
passed
passed
returned

MMLT, CMMLT, DMMLT, IMMLT

CALL MMLT (matp, matl, matr, nl, n2, n3)

(This is the form for single-precision numbers. For integers, complex, or
double-precision numbers use IMMLT, CMMLT, or DMMLT respectively. This
subroutine multiplies the nlxn2 matrix matl (on the left) by the n2xn3
matrix matr (on the right) and stores the resulting nlxn3 product matrix
in matp.

Note

matp must be distinct from matl and matr, although matl
and matr may be the same. For example:

CALL MMLT (A, B, C, Nl, N2, N3)
CALL MMLT (A, B, B, N, N, N)

CALL MMLT (A, A, A, N, N, N)
CALL MMLT (A, A, B, N, N, N)
CALL MMLT (A, B, A, N, N, N)

Legal

Illegal

Argument

matp
matl
matr

nl
n2
n3

Mode

*

*
*

Integer
Integer
Integer

Subscript(s)

2
2
2

Dimension(s)

nl,n3
nl,n2
n2,n3

Comments

returned
passed
passed
passed
passed
passed

* are of the same mode which determines which subroutine is used.

20 - 15 November 1977

SECTION 20 PDR3057

MSCL, CMSCL, DMSCL, IMSCL

CALL MSCL (mato, mati, n, m, scon)

(This is the form for single-precision numbers. For integers, complex, or
double-precision numbers use IMSCL, CMSCL, or DMSCL.)

This subroutine multiplies the nxm matrix mati by scalar constant scon and
stores the resulting nxm matrix in mato. By components scalar multiplica-
tion is understood to be:

mato (i,j) = scon*mati (i,j)

for i from 1 to n, j from 1 to m.

Argument Mode Subscript(s)

mato
mati
n
m
scon

*

*

Integer
Integer

*

Dimension(s)

n,m
n,m

Comments

returned
passed
passed
passed
passed

* all of the same mode which determines which subroutine is used.

MSUB, CMSUB, DMSUB, IMSUB

CALL MSUB (matd, mati, mat2, n, m)

(This is the form for single-precision numbers. For integers, complex or
double-precision numbers use IMSUB, CMSUB, or DMSUB respectively). Sub­
tracts the nxm matrix mat2 from the nxm matrix mati and stores the differ­
ence in the nxm matrix matd.

Argument

matd
mati
mat2
n
m

Mode

*

*
*

Integer
Integer

Subscript (s)

2
2
2

Dimension(s) Comments

n,m
n,m
n,m

returned
passed
passed
passed
passed

* all of the same mode which determine the subroutine to be used.

MTRN, CMTRN, DMTRN, IMTRN

CALL MTRN (mato, mati, n)

(This is the form for single-precision numbers. For integers, complex, or
double-precision numbers use IMTRN, CMTRN, or DMTRN respectively). Calcu­
lates the transpose of the nxn matrix mati and stores it in the nxn matrix

REV. 0 20 - 16

PDR3057 LIBRARIES REFERENCE

mato. The relationship between mati and mato is:

mato (i,j) = mati (j, i)

for i, j = 1 to n. mato and mati must be distinct.

Argument Mode Subscript(s) Dimension(s)

mato
mati
n

n,n
n,n

Comment

returned
passed
passed Integer

* all of the same mode which determines the subroutine used.

PERM

CALL PERM (iperm, n, iwl, iw2, iw3, last [, restrt])

PERM computes the next permutation of n elements with a single interchange
of adjacent elements each time it is called. The first call to PERM returns
the permutation 1, 2, 3, ..., n. This subroutine is self-initializing and
proceeds through all ni permutations. At the last permutation it returns
a value of last = 1 and resets itself. The PERM subroutine may be re-ini­
tialized by the user by passing a new value of n or by passing the restrt
parameter with a value of 1. (The restrt parameter is optional, if re­
initialization is not desired either omit this parameter from the calling
sequence or set it to a value of 0. The calling program should not attempt
to modify iperm, iwl, iw2, or iw3.

Argument

iperm
n
iwl
iw2
iw3
last
restrt

Mode

Integer
Integer
Integer
Integer
Integer
Integer
Integer

Subscript(s)

1

1
1
1

Dimension(s)

n

n
n
n

Comments

returned
pass
work
work
work
return
passed (optional)

For further details see:

"Loopless Algorithms for Generating Permutations, Combinations, and
Other Combinatorial Configurations," Gideon Ehrlich, Journal of the
ACM, 20, No3 (July 1973) pp 5000-5113.

20 - 17
November 1977

SECTION 20 PDR3057

SORT AND SEARCH LIBRARY

The subroutines listed here are contained in the library MSORTS in UFD=LIB.
This is an R-mode library. There is, at present, no V-mode version. A
complete discussion of these subroutines will be found in REFERENCE GUIDE,
SOFTWARE LIBRARY, PDR3106.

See Knuth, Donald The Art of Computer Programming vol. 3 for complete dis­
cussion of these types of sorts.

Characteristics of the Sorts

Sort
Approximate

relative running time Comments

Average Maximum

BUBBLE

HEAP

INSERT

QUICK

SHELL

Nz

(23N) In N

N2

(12N) In N

N1.25

(26N) In N

-

N2

N1.5

only good for very small N

inefficient for N<2000

small N; very good on
nearly ordered tables

fastest but very slow on
nearly ordered tables

good for N<2000

Where:

N is the number of entries in the table (nentry).

These routines all sort the table in increasing order with the key treated
as a single, signed multi-word integer.

RADXEX, however, treats the key as a single, unsigned multi-word (or par­
tial word) integer. For example:

If the keys were 5, -1, 10, -3,
RADXEX would sort them to: 5, 10, -3, -1
The other routines would sort them to: -3, -1, 5, 10

Parameters Common to More Than One Subroutine

table Pointer to first word of table of entries. Example: the
~ table is an array TABLE (I,J), then ptable=LOC (table) .

(type: INTEGER)

nentry Number of entries in the table (e.g., items to be sorted
or searched). (type: INTEGER)

REV. 0 20 - 18

PDR3057 LIBRARIES REFERENCE

nwords Number of words/entry, (type: INTEGER)

fword Starting word of the key field in the entry. 0<fword<nwords
(type: INTEGER)

nkwrds Number of words in the key filed. 0<nkwrds<nwords.
fword+nkwrds-l<nwords (the key field must be contained
within the entry). (type: INTEGER)

tarray A temporary one-dimensional array used as a work area;
size varies with sort used.

npass Returned pass counter (type: INTEGER)

altbp An optional alternate return if an error is caused by a
bad parameter (type: address constant). If altbp is not
specified, then an error causes a normal return with
npass=0.

General Requirements for Using In-memory Sorts

1. all entires must be of equal length

2. key words must be contiguous (no secondary keys)

Sorts

BUBBLE - interchange sort

CALL BUBBLE (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp,incr)

Where tarray has dimension nkwrds

Where incr is used to sort non-adjacent entries in the tables.
Default is INCR=1 (adjacent) (type: INTEGER)

HEAP - heapsort

CALL HEAP (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

Where tarray has dimension nwords

INSERT - straight insertion sort

CALL INSERT (ptable, nentry, nwords, fword, nkwrds, npas s, altbp, incr)

Where incr is used to sort non-adjacent entries in the table.
Default is incr=l (adjacent) . (type: INTEGER)

QUICK - partition exchange sort

CALL QUICK (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

Where tarray has dimension nwords

20 — 19
November 1977

SECTION 20 PDR3057

RADXEX - radix exchange sort

CALL RADXEX (ptable/nentxy,nwords,fword,fbit,nbit,tarray,npass,altbp)

Where fbit is the first bit within FWORD of the key

nbit is the number of bits in the key

Note

fwordf (nbit+fbit-2)/16<nwords

Where tarray has dimension 2*nbit

SHELL - diminishing increment sort

CALL SHELL (ptable,nentry,nwords/fvrard,nkwrds,npass,altbp)

Search

BNSRCH - search/maintain ordered table

CALL BNSRCH (ptable,nentry,nwords,rword,nkwrds,skey, fentjry,index,
opflag,altnf,altbp)

skey - a search key array of dimension nkwrds

fentry - array of dimension nwords into which the found) entry
is read (see below under opflag=3 for special juse)

index - entry number of the found entry

opflag - operation flag

0 locate

1 locate and delete

2 locate or insert

3 locate and update

altnf - alternate return if entry is not found

Simple binary searching (opflag=0) tests each entry's key field for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the not
found alternate return (altnf) is taken. If altnf is not specified, the
normal return is taken with index=0.

The operation for opflag=l is the same as opflag=0 except that if the
entry is found, it is deleted from the table as well as returned in
fentry. In this case, index specifies where the entry was.

REV. 0 20 " 20

PDR3057 LIBRARIES REFERENCE

The operation for opflag=2 is the same as opflag=0 if the entry is found.
If, however, the entry is not found, the contents of fentry will be inserted
into the table and index will indicate the position of the new element.
Also altnf will be taken.

The operation for opflag=3 is the same as opflag=0 if the entry is not found.
If the entry is found, the contents of fentry and the found entry are inter­
changed, thus updating the table and returning the old entry.

20 - 21
Noveirfoer 1977

SECTION 20 PDR3057

APPLICATIONS LIBRARY

The applications library provides programmers with easy-to-use functions
and service routines falling between very high-level constructs and very
low-level systems routines. The applications library is located 'in UFD=LIB
in the files APPLIB (R-mode programs) and VAPPLB (V-mode programs!) . All
routines in VAPPLB are pure procedure and may be loaded into the shared
portion of a shared procedure. The applications library should be loaded
before loading the FORTRAN library.

Programs using applications library routines should use the $INSERT file
SYSCOM>A$KEYS which defines the keys used in these routines.

The applications routines may be used as functions or as subroutine calls
as desired. The function usage gives additional information. The type of
value of the function (LOGICAL, INTEGER, etc.) is specified for each func­
tion.

A detailed description of this library will be found in REFERENCE GUIDE,
SOFTWARE LIBRARY, PDR3106.

CLOS$A Closes a file open on funit

<logical> = CLOSE$A (funit)

or

CALL CLOSE$A (funit)

funit - PRIMDS file unit number (type: INTEGER*2)

If function form is used:

.TRUE. operation is successful

.FALSE. operation not successful
1

CNVA$A Converts ASCII digit string to numerical value for octal|, decimal,
hexadecimal numbers.

<logical> = CNVA$A(numkey,name,namlen/value)

or

CALL CNVA$A (numkey, name, namlen, value)

numkey - number base (type: INTEGER*2)

A$DEC decimal

A$OCT octal

A$HEX hexadecimal

REV. 0 20-22

PDR3057 LIBRARIES REFERENCE

name - ASCII number string variable

namlen - length of NAME in characters (type: INTEGER*2)

value - numerical value returned (type: INTEGER*4)

If function form is used:

.TRUE. successful conversion

.FALSE. unsuccessful conversion; VALUE=0

Note

Overflow for octal or hexadecimal is ignored (.TRUE.)
but considered a failure (.FALSE.) for decimal

CTIM$A Returns CPU time since login in centiseconds

<real*8> = CTIM$A(cputim)

or

CALL CTIM$A(cputim)

cputim - returned value of CPU time (type: INTEGER*4)

If function form is used:

value is CPU time since login seconds (type:
REAL*4 or REAL*8)

DATE$A Returns the currer.t date

<real*8> = DATE$A*date)

or

CALL DATE$A(date)

date - returned value of the date as DAY, MON DD 19YR
(date must be at least 16 characters long)

If function form is used:

value is date as MH/DD/YY (type: REAL*8)

Note

Valid from January 1, 1977 to December 31, 1986.

2 0 2 3 November 1977

SECTION 20 PDR3057

DELE$A iDeletes a file with specified name

<logical> = DELE$A(name, namlen)

or

CALL DELE$A(name,namlen)

name - filename (or treename) of file to be deleted

namlen - length of name in characters (type: INTEGER*2)

If function form is used:

.TRUE. deletion successful

.FALSE. deletion unsuccessful (file not found, etc.)

DOFY$A Returns current day number in year

<real*8> = DOFY$A(dofy)

or

CALL DOFY$A(dofy)

dofy - value returned as DDD . (dofy must be at least
4 characters)

If function form is used;

value date as YR.DDD, suitable for FORTRAN
format F6.3 (type; REALM or REAL*8)

Note

Valid frcm January 1, 1977 to December 31, 1986.

DTIM$A Returns disk time since login in centiseconds

<real*8> = DTIM$A(dsktim)

or

CALL DTIM$A (dsktim)

dsktim - disk time in centiseconds (type: INrEGER*4)

If function form is used:

value is disk time since login in seconds
(type: REAL*4 or REAL*8)

BEV. 0 20 " 24

PSR3057 LIBRARIES REFERENCE

EDAT$A Returns date in European/military format

<real*8> = EDAT$A(edate)

or

CALL EDAT$A(edate)

edate - returned date in form DAY, DD MON 19YR
(EDATE must be at least 16 characters long)

If function form is used:

value is DD/MM/¥R (type: REAL* 8)

Note

Valid from 1 January 1977 to 31 December 1986.

ENCD$A Encodes value in FORTRAN floating print format

<logical> = ENCD$A (array,width,dec,value)

or

CALL ENCD$A (array,width,dec,value)

array - array which will receive the encoded value
(must be long enough to receive this)

width - field width as in FORMAT Fw.d (must be even;
maximum = 16) (type: INTE(ER*2)

dec - number of places to right of decimal point; d
in FORMAT Fw.d (type: INTEGER*2)

value - value to be encoded (type: REAL*8)

If function form is used:

.TRUE. successful encoding

.FALSE. encoding failed (ARRAY filled with
asterisks)

Note

This routine will attempt to encode value in the supplied
Fw.d format if it will fit. If not, the dec argument is
decremented (moving the decimal point to the right) until
it will fit. If dec reaches 0, or is originally supplied
as 0, value will be encoded in Iw format if the number

20 - 25 November 1977

SECTION 20 PDR3057

will fit into a 32-bit integer. If not, and if the
field is wide enough (width > 7) , the VALUE will be
encoded in E format. If the field is not wide enough,
it will be filled with asterisks.

Note that the largest value of width will be 16. If
it is larger than 16, only the first 16 characters
of array will be used.

EXST$A Checks for existence of specified file

<logical> = EXST$A (name,namlen)

name - filename (or treename) of file to be searched for

namlen - length of NAME in characters (type: INTEGER*2)

.TRUE. f i l e ex i s t s

.FALSE. file does not exist or error
encountered

FILL$A Fills buffer with specified character

<integer> = FILL$A (name, namlen, char)

or

CALL FILL$A(name,namlen,char)

name - buffer to be filled

namlen - length of name in characters (type: INTEGER*2)

char - fill character in FORTRAN Al FORMAT (type: INTEGER(2)

If function form is used:

value is INTEGER (*2 or *4 according to
compilation option)

GCHR$A Accesses character in specified array position

<integer> = GCHR$A (farray,fchar)

or

CALL GCHR$A (farray,fchar)

farray - a packed array from which character is to be
obtained

REV. 0 20-26

PDR3057 LIBRARIES REFERENCE

fchar - character position in farray (type: INTEGER*2)

If function form is used:

value is the accessed character in FORTRAN
Al FORMAT; character is in leftmost byte,
right padded with blanks.

GEND$A Positions file pointer on funit to End-of-File position

<logical> = GEND$A (funit)

or

CALL GEND$A (funit)

funit - PRIMOS file unit number (type: INTEGER2)

If function form is used:

.TRUE, pointer positioned

.FALSE. pointer not positioned

MCHR$A Replaces a character in one array with a character from another

<integer> = MCHR$A(tarray,tchar,farray,fchar)

or

CALL MCHR$A (tarray,tchar,farray,fchar)

tarray - receiving packed array

tchar - character position in tarray (type: INTEGER*2)

farray - source packed array

fchar - character position in farray (type: INTEGER*2)

If function form is used:

value is accessed character in FORTRAN
Al FORMAT; character is leftmost byte,
right padded with blanks.

20 - 27
November 1977

SECTION 20 PDR3057

NLEN$A Returns operational length of buffer

<integer*2> = NLEN$A(name,namlen)

or

CALL NLEN$A(name,namlen)

name - buffer whose length is to be tested

namlen - length of name in characters (type: INTEGER*2)

If function form is used:

value is operation length (not including
trailing blanks) of buffer.

OPEN$A Opens file on specified funit

<logical> = OPEN$A(opnkey+typkey, name, namlen, funit)

or

CALL OPEN$A (opnkeyf typkey, name, namlen, funi t)

opnkey - action to be taken (type: INTEGER*2)

A$READ open for reading

A$WRIT open for writing

A$RDWR open for reading and writing

typkey - type of file (type: INTEGER*2)

A$SAMP SAM file

A$DAMF DAM file

name - filename (or treename) of file to be opened

namlen - length of name in characters (type: INTEGER*2)

funit - PRIMOS file unit number on which to open file

In function form:

.TRUE. opened successfully

.FALSE. not opened

REV. 0 20-28

PDR3057 LIBRARIES REFERENCE

OPNP$A Gets a filename from user terminal and opens it on FUNIT

<logical> = OPNP$A (msg ,msglen, opnkey+typkey, name, namlen, f uni t)

or

CALL OPNP$A (msg ,msglen, opnkey+typkey, name, namlen, funit)

msg - user-supplied prompt message

msglen - length of MSG in characters (type: INTEGER*2)

opnkey - action to be taken (type: INTEGER*2)

A$READ open for reading

A$WRTT open for writing

A$RDWR open for reading and writing

typkey - type of file (type: INTEGER*2)

A$SAMF SAM file

A$DAMF DAM file

name - filename (or treename)

namlen - length of name in characters (type: INTEGER*2)

funit - PRIMOS file unit number (type: INTEGER*2)

In function form:

.TRUE. operation successful

.FALSE. operation unsuccessful or no
name supplied

OPNV$A Opens a file on funit, verifies operations, retries if
FILE IN USE

<logical> = OPNV$A (opnkey+typkey, name, namlen, funit, verkey, wtime, retrys)

or

CALL OPNV$A (opnkey+typkey,name,namlen, funit,verkey,wtime, retrys)

opnkey - action to be taken (type: INTEGER*2)

A$READ open for reading

20 - 29 November 1977

SECTION 20 PDR3057

A$WRTT open for writing

A$RDWR open for reading and writing

typkey - type of file (type: INTEGER*2)

A$SAMF SAM file

A$DAMF DAM file

name - filename (or treename) of file to be opened

namlen - length of name in characters (type: INTEGER*2)

funit - PRIM3S file unit number (type: INTEGER*2)

verkey - verification key (type: INTEGER*2)

A$NVER no verification

A$VNEW verify new (OK TO MODIFY OLD)

A$OVAP verify new plus overwrite or append if writing

A$VOLD verify old (already exists)

wtime - number of seconds to write if FILE IN USE (type:
INTEGER* 2)

Notes

Verification and delay are independent functions.

If wtime and retrys are specified non-zero and the file
to be opened is IN USE, the open will be retried the
specified number of times, with wtime seconds (elapsed
time) between each attempt. If the number of retries
expires, or if either wtime or retrys is initially 0
and the file is IN USE, the function returns .FALSE..
If verification is requested (verkey.NE.A$NVER) , the
following actions will be taken:

A$VNEW - if the file already exists and opnkey is
either A$WRTT or A$RDWR, the user will be
asked if it is OK to modify the old file.
If the answer is "NO", the function re­
turns .FALSE.. If the answer is "YES",
the file is opened.

REV. 0 20-30

PRD3057 LIBRARIES REFERENCE

A$OVAP - this is the same as A$VNEW except that if
an old file is to be modified, the user
is also asked if the file should be over­
written or appended to. If the answer is
"APPEND", the file will be positioned to
End-of-File.

A$VOLD - this is the default case if opnkey=A$READ.
If not, and if the named files does not
already exist, a new file will not be cre­
ated and the function returns .FALSE..

If any errors not covered above occur while opening the
file or positioning it (A$OVAP), the function returns
.FALSE.. If the open is ultimately successful, the func­
tion returns .TRUE. .

retrys - number of times to retry if FILE IN USE (type:
INTEGER* 2)

OPVP$A Gets filename from user, opens file, verifies operations, retries
if FILE IN USE

<logical> = OPVP$A(rasg,msglen,opnkeyftypkey, name, namlen,f unit,
verkey, wtime, retrys)

CALL OPVP$A (msg, msglen, opnkey+typkey, name, namlen, funit,
verkey, wtirae, retrys)

msg - user-supplied prompt message for name

msglen - length of msg in characters (type: INTEGER*2)

opnkey - action to be taken (type: INTEGER*2)

A$READ open for reading

A$WRIT open for writing

A$RDWR open for reading and writing

typkey - type of file (type: INTEGER*2)

A$SAMF SAM file

A$DAMF DAM file

name - filename (may be a treename)

namlen - length of name in characters (type: INTEGER*2)

funit - PRIMDS file unit number

20 - 31 Novenfoer 1977

SECTION 20 PDR3057

verkey - verification key (type: INTEGER*2)

A$NVER no verification

A$VNEW verify new (OK TO MODIFY OLD)

A$OVAP verify, new plus overwrite or append if writing

A$VOLD verify old (already exists)

wtime - number of seconds to wait if FILE IN USE (type:
INTEGER* 2)

retrys - number of times to retry if FILE IN USE (type:
INTEGER*2)

Notes

Verification,and delay as described below are indepen­
dent of each other.

If wtime and retrys are specified to be non-zero ahd
the file to be opened is IN USE, the open will be re­
tried the specified number of times, with wtime sec­
onds (elapsed time) between each attempt. If the num­
ber of retries expires, or if either wtime or retrys
is initially 0 and the file is IN USE, the function
returns .FALSE..

If verification is requested (verkey .NE. A$NVER) , the
following actions will be taken:

A$VNEW - If the file already exists and opnkey is
either A$WRIT or A$RDWR, the user will be
asked if it is OK to modify the old file.
If the answer is "NO", a new file name
will be requested. If the answer is "YES",
the file is opened.

A$OVAP - This is the same as A$VNEW except that if
an old file is to be modified, the user is
also asked if the file should be overwrit­
ten or appended to. If the answer is
"APPEND", the file will be positioned to
End-of-File.

A$VOLD - This is the default case if opnkey=A$READ.
If not, and if the named file does not al­
ready exist, a new file will not be created
and a new name will be requested.

If any errors not covered above occur while opening the
file or positioning it (A$OVAP), or a name is not supplied
when requested, the function returns .FALSE.. If the open
is ultimately successful, the function returns .TRUE..

20 -32
REV. 0

PDR3057 LIBRARIES REFERENCE

POSN$A Positions pointer in file open on funit

<logical> = POSN$A(poskey, funit, pos)

or

CALL POSN$A(poskey, funit,pos)

poskey - type of positioning (type: INTEGER*2)

A$ABS absolute position

A$REL relative position

funit - PRIMOS file unit number (type: INTEGER*2)

pos - position; relative or absolute (type: INTEGER*4)

If function form is used:

.TRUE. operation successful

.FALSE. operation not successful

RAND$A Updates seed for random number

<real*8> = RAND$A(seed)

or

CALL RAND$A(seed)

seed - input previous seed
(type: INTEGER*4)

output new seed

If function form is used:

value is random number between 0.0 and
1.0 (type: REAL*4 or REAL*8)

RNAM$A Reads text input from terminal into buffer

<logical> = RNAM$A(msg,msglen,namkey,name,namlen)

msg - message text

msglen - length of msg in characters (type: INTEGER*2)

namkey - action (type: INTEGER*2)

20 " 33 November 1977

SECTION 20 PDR3057

A$FUPP force input to upper case

A$UPLW do not force upper case

A$RAWI read rest of line

name - name returned

namlen - length of name buffer in characters (maximum=80)
(type: INTEGER*2)

This routine fills name with blanks, prints the supplied message and ap­
pends ":" to it. It then reads a user response. If the response is not a
legal name or if the name provided is too long for the supplied buffer, the
error will be reported and msg will be repeated. If no name is provided,
the value of the function will be .FALSE.. If a legal name is provided,
the function value will be .TRUE..

RNDI$A Generates initializing seed for random number generator

<real*8> = RNDI$A(seed)

or

CALL RNDI$A(seed)

seed - returned time of day in centiseconds (type: INTEGER*4)

In function form:

value is time of day in seconds (type:
REAL* 4 or REAL* 8)

Note

This function is used to initialize) the random number
generator (see RAND$A). Hence, if (the value is exactly
zero, 1234567 or 12345.67 will be returned instead.

RNUM$A reads number input into variable with specified number base

<logical> = RNUM$A (msg, msg len,numkey, value)

msg - message text

msglen - length of msg in characters (type: INTEGER*2)

numkey - number base (type: INTEGER*2)

A$DEC decimal

REV. (J 20 - 34

PDR3057 LIBRARIES REFERENCE

A$OCT octal

A$HEX hexidecimal

value - returned value (type: INTEGER*4)

Notes

This routine will print the supplied message and append
":" to it. It then reads a user response. If the re­
sponse is not a legal number or if the number provided
has too many digits for an INTEGER*4 value, the error
will be reported and msg will be repeated. If no number
is provided, the value of the function will be .FALSE.
and VALUE=0. If a legal number is provided, the func­
tion value will be .TRUE, and the value will be returned
in value.

Numbers may be preceded by a "+" or "-".

RPOS$A Returns current absolute position of pointer on FUNIT

<logical> = RPOS$A (funit,pos)

or

CALL RPOS$A (funit,pos)

funit - PRUVDS file unit on which file is opened (type:
INTEGER*2)

pos - returned absolute position (type: INTEGER*4)

In function form:

.TRUE. successful operation

.FALSE. unsuccessful operation

RWND$A Rewinds file open on funit

<logical> = RWND$A (funit)

or

CALL RWND$A (funit)

funit - PRIMDS file unit number (type: INTEGER*2)

20 " 35 November 1977

SECTION 20 PDR3057

In function form:

.TRUE. successful operation

.FALSE. unsuccessful operation

TEMP$A Opens temporary file in current UFD for reading and writing

<logical> = TEMP$A (typkey,name,namlen,funit)

or

CALL TEMP$A (typkey,name,namlen, funit)

typkey - type of file (type: INTEGER*2)

A$SAMF SAM file

A$DAMF DAM file

name - returned name of file (.6-characters)

namlen - length of NAME buffer in characters (minimum 6
characters) (type: INTEGER*2)

funit - PRIMOS file unit number (type: INTEGER*2)

Note

The file name will be of the form T$xxxx where xxxx will
be a 4-digit decimal number between 0000 and 9999 inclu­
sive; the actual name is returned in name. If the file
is opened successfully, the function value will be .TRUE.,
otherwise the value will be .FALSE..

TIME$A Returns time of day

<real*8> = TIME$A (time)

or

CALL TIME$A (time)

time - returned time of day in form HR:MN:SC (minimum of
8 characters).

In function form:

value is the time of day in decimal hours,
(type: REALM or REAL*8)

REV. 0 20-36

PDR3057 LIBRARIES REFERENCE

TREE$A Tests name to see if it is a treename

<logical> = TREE$A (name,namlen,fstart,flen)

name - file name to be tested

namlen - length of name in characters (type: INTEGER*2)

fstart - returned position of first character of final
name (type: INTEGER*2)

flen - length of final filename in characters (type:
INTEGER* 2)

This routine will scan a file name and determine if it is a treename. If
it is a treename, the function is .TRUE, and if not, it is .FALSE.. In
addition, the final name (or entire name if not in a tree) is located in
the string. Note that if the name is empty, fstart=flen=0*

i

TRNC$A Truncates file open in funit

<logical> = TRNC$A (funit)

or

CALL TRNC$A (funit)

funit - PRIMOS file unit (type: INTEGER*2)

In function form:

value is .TRUE, if the operation is
successful and .FALSE, otherwise.

UNIT$A Tests if file is open on funit

<logical> = UNIT$A (funit)

funit - PRIMOS file unit (type: INTEGER*2)

In function form:

value is .TRUE, if the unit is open
and .FALSE, if the unit is not open.

YSNO$A Asks question to be answered YES or NO

<logical> = YSNO$A (msg,msglen,defkey)

November 1977
20 - 37

SECTION 20 PDR3057

msg - user message

msglen - message length in characters (type: INTEGER*2)

defkey - default key (type: INTEGER*2)

A$NDEF no default accepted

A$DNO default="NO" (.FALSE.)

A$DYES default="YES" (.TRUE.)

Notes

This routine will print the supplied message and append
"?" to it. It then reads a user response. If the an­
swer is "YES" or "OK", the function value is .TRUE.. If
the answer is "NO" , the function value is .FALSE.. If an
illegal answer is provided or if no default is accepted,
msg will be repeated.

User responses may be abbreviated to first 1 or 2 char­
acters.

REV. 0 20 - 38

PDR3057 LIBRARIES REFERENCE

OPERATING SYSTEM LIBRARY

These subroutines are used mainly by PRIMOS. However, a number of them
useful at the applications level are described in detail here.

Complete details will be found in REFERENCE GUIDE, FILE MANAGEMENT SYSTEM
(FMS), PDR3110.

Filenames

Filenames can be up to 32 characters long, the first character of which
must be alphabetic. Filenames can be composed only of the following char­
acters:

A-Z, 0-9, or the special characters _ # $ & * - . and /

Lower case characters, if specified, are forced to upper case. Control
characters (ASCII codes '0 - '237) are not allowed in file names. In the
file system calls, file names are either ASCII, packed two characters per
word, or character strings (the actual name preceded and followed by a sin­
gle quote). If the name length specified in a call is longer than the
actual length of the name, the name must be followed by a number of trail­
ing blanks sufficient to match the given length.

Passwords

Passwords can be at most 6 characters long. Passwords less than 6 charac­
ters must be padded with blanks for the remaining characters. Passwords
are not restricted by filename conventions and may contain any characters
or bit patterns. It is strongly recommended that passwords not contain
blanks, commas, the characters =, I,', @,{,},[,],(,) or lowercase characters.
Passwords should not start with a digit. If passwords contain any of the
above characters or begin with a digit, the passwords may not be given on
a PRIMOS command line to the ATTACH command.

Keys and Error Codes

All keys and error codes are specified in symbolic, rather than numeric
form. These symbolic names are defined as PARAMETERS for FORTRAN programs
in $INSERT files in a UFD on the master disk called SYSCOM. The key defi­
nition file is named KEYS.F for FORTRAN. The error definition file is
ERRD.F.

Error Handling

Errors occurring from a subroutine call cause a non-zero value of the argu­
ment CODE to be turned. Users should always test CODE after a call for
non-zero values to be certain no errors are missed. Error printing and
control are performed by the ERRPR$ subroutine:

CALL ERRPR$ (key,code,text,text-length,name,name-length)

20 " 39 November 1977

SECTION 20 PDR3057

key - action to be taken after printing message

K$NRTN exit to PRIMOS, do not allow return to
calling program

K$SRTN exit to PRIMOS, return to calling program
following a START command

K$IRTN return immediately to calling program

code - an integer variable containing the error code
returned by the subroutine generating the error

text - user's message to be printed following standard
error message (up to 64 characters)

text-length - length of text in characters

To omit text, specify both text and text-length
as 0.

name - user-specified name of program or sub-system,
detecting or reporting the error (up to 64
characters)

name-length - length of name in characters

To emit name, specify both name and
name-length as 0.

The message format for non-zero values of CODE is:

<standard text>.. <user's text, if any> (<name, if any>) e.g.,

ILLEGAL NAME, OPENING NEWFILE (NEWWRT)

These errors are included in the list of run-time errors in Appendix A.
They are labelled as New file call errors.

Operating System Subroutines

ATCH$$ Attaches to a UFD and optionally makes it the home UFD.

CALL. ATCH$$ (ufd-name,name-length, logical-disk,password, key, code)

ufd-name name of UFD to be attached to (if ufd-name=
K$HOME and key=0, attachment is to heme UFD)

name-length length in characters of ufd-name (if ufd-
name=K$HOME, name-length is ignored.

REV. 0 20-40

PDR3057 LIBRARIES REFERENCE

logical-disk logical disk to searched for ufd-name when
key=K$IMFD

logical-disk

K$ALLD

K$CURR

action

search all started-up
logical devices
search MFD of current
disk

password

key

code

3-word array containing the owner or non-
owner password of ufd-name (if attaching to
home UFD, password may be 0)

reference-key + set-key

reference-key

K$IMFD attach to ufd-name in MFD on logical-disk
K$ICUR attach to ufd-name in current UFD

set-key

K$SETH set current UFD to home after attaching

returns integer-valued error code

COMI$$ Switches command input stream from terminal to command file and
vice-versa.

COMQ$$ Switches ouptut stream from terminal to file and vice-versa.

CREA$$ Creates a sub-UFD in the current UFD.

CNAM$$ Changes a filename

CALL CNAM$$ (old-name,old-name-length,new-name,new-name-length,code)

old-name name of file to be changed

old-name-length number of characters in old-name

new-name name to be changed to

new-name-length number of characters in new-name

°°de returns integer-valued error code.

20 - 41 November 1977

SECTION 20 PDR3057

Note

CNAM$$ requires owner-rights in the current UFD.

The names of the MFD,BOOT,BADSPT, or the packname may
not be changed.

ERKL$$ Reads or sets the Erase and Kill characters.

GPAS$$ Returns passwords of sub-UFD in the current UFD.

NAMEQ$ Compares filename for equivalence.

PRWF$$ Reads, writes, and positions pointer in a SAM or DAM file.

CALL PRWF$$ (read-write-key+position-key+mode, file-unit,LOG (buffer)
number-of-words, position-value, words-transferred, code)

read-write-key

K$READ

K$WRTT

K$POSN

K$TRNC

K$RPOS

position-key

K$PRER

KPOSR

K$PREA

action to be taken (mandatory)

read number-of-words from file-unit
into buffer

write number-of-words from buffer to
file-unit

set current position to value at
32-bit integer in position-value

truncate .files open on file-unit at
current position

return current positions as a 32-bit
integer in position-value

indicates positioning (optional)

move file pointer of file-unit position-
value words relative to current position;
then perform read-write-key operation

performs read-write-key operation then
move file pointer of file-unit position-
value words relative to current position

move file pointer of file-unit to absolute
position-value then perform read-write-key
operation ~

REV. 0 20 - 42

PDR3057 LIBRARIES REFERENCE

K$POSA perform read-write-key operation, then move
pointer of file-unit to absolute position-
value.

If position-key is emitted, K$PRER is used.

mode

omitted

K$CONV

transfer all or convenient number of words
(optional)

read/write number-of-words

read/write convenient number of words up to
number-of-words

See REFERENCE GUIDE, FILE MANAGEMENT SYSTEM (FMS) , PDR3110
for a discussion of "convenient".

filer' unit

buffer

number-of-words

posi tion-va lue

file unit on which the file has been opened
(by SRCH$$, PRIMOS command, etc.)

data buffer for read/write. If not needed,
specify as LOC(O).

number of words to be transferred (mode=0)
or maximum number of words to be transferred
(mode=K$CONV) . number-of-words may range
frcm 0 to 65535.

relative or absolute position value (32-bit
integer, INTEGER*4). If not needed, specify
long-integer zero as 000000 or INTL(O)

words-transferred the number of words actually transferred
when read-write-key=K$READ or K$WRTT; other
keys leave WM-unmodified. (INTEGER*2)

code returns integer-valued error code

RDEN$$ Reads entry in a UFD.

RDLIN$ Reads line of characters from compressed or uncompressed ASCII
disk file.

RDTK$$ Parses the command line, token by token.

REST$$ Restores an R-mode memory image to user memory from a disk file.

RESU$$ Restores an R-mode memory image frcm a file, sets initial values,
and begins execution.

20 - 43 'ovo"ioor 1377

SECTION 20 PDR3057

CALL RESU$$ (filename,name-length)

filename name of the file containing the memory image

name-length number of characters in filename

Note

An error in the call to RESU$$ causes an error message
to be printed automatically and then returns command
to PRIMDS.

SATR$$ Sets attributes (protection,data,time,etc.) in a UFD entry.

SAVE$$ Saves an R-mode memory image in user memory by writing it into a
disk file.

SPAS$$ Sets the passwords in the current UFD.

SRCH$$ Opens or closes a file.

CALL SRCH$$ (action+referencefnewfile,filename,name-length,
file-uni t,file-type,code)

action action to be taken (mandatory)

K$READ open filename for reading on file-unit

K$WRIT open filename for writing on file-unit

K$RDWR open filename for reading and writing on file-unit

K$CLOS close file by filename or by file-unit

K$DELE delete filename

K$EXST check existence of filename

reference modifies action (optional)

K$IUFD search for filename in current UFD (this
is the default)

K$ISEG perform action option on the file that is
a segment directory entry in the directory
open on file unit filename.

K$CACC change access rights of file open on file-
unit to action

REV. 0 20 - 44

PDR3057 LIBRARIES REFERENCE

new-file

K$NSAM

K$NDAM

K$NSGS

K$NSGD

filename

name-length

file-unit

file-type

specifies type of file to create if file­
name does not already exist

SAM file (this is the default)

DAM file

SAM segment directory

DAM segment directory

name of the file to be opened. If refer-
ence=K$ISEGf filename is a file unit on
which a segment directory is already open

number of characters of filename

file unit number on which file is to be
opened or closed

returns type of file opened. If call does
not open file, its value is unchanged.
The values are integers

0
1
2
3
4

SAM file
DAM file
SAM segment directory
DAM segment directory
UFD

code returns an integer-valued error code.

Notes

A UFD may be opened only for reading.

A UFD cannot be deleted unless it is empty.

A segment directory cannot be deleted unless it is
of length 0.

SGDR$$ Positions and reads segment directory entries.

SLEEP$ Suspends execution of user process

CALL SLEEP$ (interval)

interval the suspension time in milliseconds (type:
INTEGER*4)

20 - 45 [Tovorfoer 1377

SECTION 20 PDR3057

Notes

1. If interval £ 0, no suspension occurs.

2. A QUIT, followed by a START at the user terminal
causes immediate return from the SLEEP$ call

TEXTO$ Checks the validity of a filename.

TSRC$$ Opens or closes a file anywhere in the PRIMOS file structure.

CALL TSRC$$ (action+new-file,treename,file-unit,character-
position , code)

action action to be taken (mandatory)

K$READ open treename for reading on file-unit

K$WRTT open treename for writing on file-unit

K$RDWR open treename for reading and writing

on file-unit

K$DELE delete file treename

K$EXST check on existence of treename

new-file specifies type of file to create if
treename does not already exist

K$NSAM SAM file (this is the default)

K$NDAM DAM file

K$NSGS SAM segment directory

K$NSGD DAM segment directory

treename a specification of any file in any
directory or subdirectory stored in
array treename packed two characters
per word

file-unit file unit number on which the file
is to be opened or deleted. The
file-unit is closed before any action
is taken

REV. 0 20 - 46

PDR3057 LIBRARIES REFERENCE

character-position a two-element integer array

word 1 of entry: the first character in
the array that is part of the treename
(count starts at 0) returns: one past
the last character that was part of the
treename.

word 2 - the number of characters in the
treename.

file-type returns type of file opened. If call
does not open file, its value is un­
changed. The values are integers.

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD

code returns an integer valued error code

Notes

TSRC$$ always closes the file unit, then attaches to
the user's home UFD before attempting any action.

WTLIN$ Writes a line of characters in ASCII format to a disk file in
compressed format.

20 - 47 November, 1977

PTU47 PART 1 REV. 15 FORTRAN

PART 1

FORTRAN LANGUAGE AND COMPILER

GENERALIZED SUBSCRIPTS

There is now no syntactical limitation on subscript expressions. The
FORTRAN compiler allows any integer-valued expression as an array
subscript.

Use of Generalized Subscipts

Array references have the form

A(Sl,S2,...rSn)

A is the array name

Si is a subscript expression (K=i<=7)

A subscript expression is any legal FORTRAN long- or
short-integer-valued expression. It may contain constants, variables,
function references, intrinsic references, and other array references.
The nesting limit on any expression is 32 levels of parentheses,
whether syntactical, array, or function reference parentheses.
Non-integer constants and variables are not allowed within subscript
expressions.

Note

Conversion functions (such as IDINT, IFIX, INT) may
be used to convert non-integer expressions to
integer within a subscript expression.

Example

The following FORTRAN program illustrates the use of generalized
subscripts. It deliberately contains some rather bizarre expressions
which show the flexibility of subscripting, but is not intended as a
model of good coding practice. (POOP is a REAL-valued function.)

C
C GENERALIZED SUBSCRIPTS
C

REAL A(100,100),B(10),Z
INTEGER G(3,4,5),H(3000),I,J,K

REV. 0 4 7 - 1 July 1978

PTU47 PART 1 REV. 15 FORTRAN

C
C ASSIGNMENT
C

Z=A(G(H(25*K**2) ,2,RS(I,H(2))) ,INTS(Z-A(1,10*H(J))))
* +B(INTS(POOP(2)))

C
C IF
C

IF(Z.NE.B(RS(K,H(K*5)))) GOTO 1000
C
C CALL
C
1000 CALL POOPl(A(H(INTS(POOP(l))),G(l,J*2,l)),Z)
C
C ETC.
C

END

FORTRAN DIRECT ACCESS CAPABILITY

Introduction

The FORTRAN compiler and run-time library now support direct access
READ and WRITE statements. READ and WRITE statements may contain a
record number to randomly access file records. With sequential access,
record n-1 must be read or written before record n. The syntax
implemented is compatible with both IBM FORTRAN and new ANSI standard
FORTRAN.

Direct Access READ and WRITE Statements

The syntax of the direct access READ and WRITE statements is:

READ(u'r,f,ERR=s) list (IBM format)

READ(u,f,REC=r,ERR=s) list (ANSI format)

WRITE(u'r,f,ERR=s) list (IBM format)

WRITE(u,f,REC=r,ERR=s) list (ANSI format)

u is a long or short integer constant or variable whose value is
the FORTRAN unit number.

Note

The apostrophe (') is required in the IBM
form of the direct access READ and WRITE
statements.

REV. 0 4 7 - 2 July 1978

PTU47 PART 1 REV. 15 FORTRAN

r_ is the long or short integer expression whose value is the
record number to be accessed.

f is the statement number of the format specifier (optional).

s_ is the statement number to which control is transferred if a
device or format error is encountered during transfer
(optional).

The END= specifier is not allowed in the direct access read statement.
This restriction is consistent with both IBM FORTRAN and the new ANSI
standard FORTRAN.

Usage

Special action is required by the user when creating and opening files
to be used for direct access I/O. Files used for direct access I/O
should be DAM files. (Direct access I/O statements may be used with
SAM files but execution time will be longer). If the file is
formatted, the ATTDEV subroutine must be called so that fixed length
records are written. (The ATTDEV subroutine is also used to set the
record length.) DAM files are created by opening a new file using the
K$NDAM subkey in either a SRCH$$ or TSRC$$ call. (See REFERENCE GUIDE,
SOFTWARE LIBRARY, PDR3106 for details).

The ATTDEV subroutine may be used to alter the mapping of FORTRAN units
to file system units or to change the record size from the default of
60 words (120 characters). The records of a direct access formatted
file must be fixed length. This is done by setting the second argument
of ATTDEV to 8. The records of an unformatted file are fixed length by
default. If the record length of any file exceeds 66 words (132
characters), a COMMON declaration for F$IOBF must be included. The
size of F$IOBF must be as large as the largest record size. (See
CHANGING RECORD SIZE for details).

A program that creates a direct access file cannot write record n
before record n-1 has been written. A separate program should be used.
Once the file has been created it can be read or written in random
order.

After a direct access I/O statement, the file is positioned at the
record following the one just transferred. If the direct access file
is then accessed sequentially, using other forms of the READ or WRITE
statement, it is not necessary to include the record number. This
enhances performance by eliminating the positioning call.

Formatted files used for direct access I/O may be examined by the
Editor. They must not be modified using the Editor. The Editor
compresses records, giving them variable lengths; files used for
direct access I/O must have fixed length records.

REV. 0 4 7 - 3 July 1978

PTU47 PART 1 REV. 15 FORTRAN

IBM Compatibility

The READ and WRITE statements are identical to IBM FORTRAN. The DEFINE
FILE and FIND statements of IBM FORTRAN are not supported. The record
size in the DEFINE FILE statement must appear in the ATTDEV call. The
record size in the DEFINE FILE statement is measured in bytes or 32-bit
words rather than 16-bit words required by ATTDEV. If the U specifier
is used in the DEFINE FILE statement, the record size of the DEFINE
FILE statement should be doubled for the ATTDEV call; otherwise, the
record size should be halved.

The ATTDEV call requires INTEGER*2 arguments. If the INTL option is
used during compilation, constants used as arguments in the ATTDEV
calls must be converted to INTEGER*2 by the INTS function (e.g.,
INTS(8)).

There is no equivalent of the DEFINE FILE associated variable in
Prime's implementation of direct access files. In IBM FORTRAN, the
value of the associated variable is the number of the record that
follows the record just transferred.

Example 1

C THIS PROGRAM CREATES A DIRECT ACCESS FILE
C NOTICE CALLS TO ATTDEV AND SRCH$$
C
C

IMPLICIT INTEGER*2 (A-Z)
C

PARAMETER NUMREC=100 /* NUMBER OF RECORDS IN FILE
PARAMETER RECSIZ=40 /* SIZE OF RECORDS IN INTEGER*2 WORDS
PARAMETER UNIT=5 /* UNIT # USED IN FORTRAN READS/WRITES
PARAMETER FUNIT=1 /* FILE UNIT # USED IN SRCH$$

$INSERT SYSCOM>KEYS.F
C
C ATTDEV CALL - FORCES FIXED LENGTH RECORDS
C ESTABLISHES MAPPING OF UNIT TO FUNIT
C SET RECORD SIZE

CALL ATTDEV(UNIT,8,FUNIT,RECSIZ)
C
C OPEN FILE, USE K$NDAM SUBKEY TO FORCE DAM FILE

CALL SRCH$$ (K$WRIT+K$NDAM,' T$SCRATCH', 9, FUNIT, TYPE, CODE)
IF (CODE.NE.0)CALL ERRPR$ (K$NRTN,CODE,0,0,0,0)

C
C IF FILE ALREADY EXISTS, IT MIGHT NO BE DAM FILE

IF(TYPE.NE.l) WRITE(1,1)
1 FORMAT ('NOT A DAM FILE')
C

DO 10 I=1,NUMREC
C THE RECORD NUMBER IN THE FOLLOWING STATEMENT IS UNNECESSARY
C BECAUSE THE RECORDS ARE BEING WRITTEN SEQUENTIALLY
10 WRITE(UNIT'I,2)I
2 FORMAT('THIS IS THE ',13,' RECORD')

REV. 0 4 7 - 4 July 1978

PTU47 PART 1 REV. 15 FORTRAN

CALL EXIT
END

Example 2

C THIS PROGRAM RANDOMLY ACCESSES PREVIOUSLY CREATED
C DIRECT ACCESS FILE
C
C

IMPLICIT INTEGER*2 (A-Z)
C

INTEGER*2 IBUF(40)
PARAMETER NUMREC=100 /* NUMBER OF RECORDS IN FILE
PARAMETER RECSIZ=40 /* SIZE OF RECORDS IN INTEGER*2 WORDS
PARAMETER UNIT=5 /* UNIT # USED IN FORTRAN READS/WRITES
PARAMETER FUNIT=1 /* FILE UNIT # USED IN SRCH$$

$INSERT SYSCOM>KEYS.F
C
C ATTDEV CALL - FORCES FIXED LENGTH RECORDS
C ESTABLISHES MAPPING OF UNIT TO FUNIT
C SET RECORD SIZE

CALL ATTDEV(UNIT,8,FUNIT,RECSIZ)
C
C OPEN THE FILE

CALL SRCH$$(K$RDWR,'T$SCRATCH',9,FUNIT,TYPE,CODE)
IF(CODE.NE.0)CALL ERRPR$(K$NRTN,CODE,0,0,0,0)

C
C CHECK IF DAM FILE

IF(TYPE.NE.l) WRITE(1,1)
1 FORMAT('NOT A DAM FILE1)
C
30 WRITE(1,6)
6 FORMAT('RECORD #?')

READ(1,7)REC
7 FORMAT(I6)

WRITE(1,2)
2 FORMAT('READ OR WRITE?')

READ(1,3)I
3 FORMAT(Al)

IF(I.EQ. 'R')GO TO 10
IF(I.EQ.'W')GO TO 20
CALL EXIT

C
10 READ(UNIT,4,REC=REC)IBUF
4 FORMAT (40A2)

WRITE(1,4)IBUF
GO TO 30

C
20 WRITE (1,8)
8 FORMAT ('RECORD INFO?')

READ(1,4)IBUF
WRITE(UNIT'REC,4)IBUF

REV. 0 4 7 - 5 July 1978

PTU47 PART 1 REV. 15 FORTRAN

GO TO 30
END

CHANGING RECORD SIZE

The default formatted record length is 60 words (120 characters). A
larger record size can be set with the ATTDEV subroutine. This
subroutine has two functions:

• Change record size associated with a FORTRAN logical I/O unit
number.

• Change the correspondence between the I/O unit number and the
physical device.

The syntax is:

CALL ATTDEV (logical-unit ,device ,unit, record-size)

logical-unit is the FORTRAN I/O unit number. This is the number
used in READ and WRITE statements (l=terminal,
2=paper tape punch/reader, etc.).

device

unit

record-size

is the position of the physical device in the
device-type tables (CONIOC). The acceptable values
are:

1 User terminal
2 Paper tape punch/reader
7 Disk file system (Compressed ASCII)
8 Disk file system (Uncompressed ASCII)

is the unit number for multi-unit devices (e.g.,
magnetic tape drive 0-3). If device is the disk
file system (7 or 8) then unit is the file unit
number (1-16).

is the maximum record size in INTEGER*2 words for
the logical-record. Each word will store 2
characters.

If the record size is to exceed 128 words (256 characters), the buffer
used by internal FORTRAN subroutines must be increased. This is done
by loading a user-created F$IOBF COMMON before loading the FORTRAN
library. Insert this statement in the user program:

COMMON/F$IOBF/array-name(size)

REV. 0 47 July 1978

PTU47 PART 1 REV. 15 FORTRAN

array-name is an arbitrary name

size is the desired buffer size in INTEGER*2 words. Each word
stores 2 characters.

CAUTION

It is not possible to increase the buffer size by
loading a user-created F$IOBF if the shared
libraries are used.

COMPILER ERROR MESSAGES ADDED AT REV. 15

ARRAY NESTING OVFLO

Use of arrays as subscripts in other arrays exceeds allowable nesting
limit (32).

END/REC PROHIBITED

The END=statement-number expression cannot be used in a direct access
READ or WRITE statement.

INTERNAL ERROR

Some combination of source code statements has generated an
unresolvable error. The programmer should never see this error.

PAREN NESTING>31

Nesting of parentheses (syntactical, array, or function reference) in
expressions may not exceed 31.

TOO FEW SUBSCRIPTS

Number of subscripts used in an array is fewer than the number
originally declared in a DIMENSION or mode specification statement.

64V-MODE COMMON

The FORTRAN compiler and SEG allow some 64V mode FORTRAN programs
faster access to variables in COMMON. If a COMMON block is loaded into
the same segment as the procedure area or link area which accesses it,
the compiled program will address the COMMON variables directly, rather
than through a two-word indirect pointer. Thus, careful loading of

REV. 0 4 7 - 7 July 1978

PTU47 PART 1 REV. 15 FORTRAN

routines with frequently accessed COMMON areas into the same segment in
64V mode will cause an appreciable increase in execution speed.

As a consequence, FORTRAN 64V programs compiled with Rev. 15 FTN must be
loaded using Rev. 15 SEG. Attempts to load with earlier versions of SEG
will result in SEG errors.

REV. 0 4 7 - 8 July 1978

PTU47 PART 2 REV. 15 FORTRAN

PART 2

REV. 15 PRIMOS AND UTILITIES

USING PRIMOS WITH NETWORKS (Rev. 15)

Many Prime installations contain two or more processors connected in a
network - a combination of communications hardware and PRIMOS software
called PRIMENET. If your system is using PRIMENET, you can do the
following:

• LOGIN to a UFD on a remote system and use that CPU to do your
processing. (Only terminal I/O is sent across the network.)

• ATTACH to directories on disk volumes connected to any other
processor in the network, and access files in such directories.
(File data is transmitted across the network; your local CPU
does the processing.)

• Enter a CX job in one of your local directories into the CX queue
on another processor in the network.

• Make sure a spool file is printed on your local spool queue (if
more than one processor is running a spool queue).

In a network, the processor your terminal is connected to is your
"local" processor, while all other processors are considered "remote".
Each processor in the system is assigned a "nodename" during system
configuration. You must know the nodenames of any remote processors
you want to access. You may also need to know the local logical disk
numbers of disks connected to remote processors. (These are also
assigned by your system operator during system configuration.) You can
determine the nodename and local logical disk numbers for remote
processors with the STATUS command (described later).

For more information on the inner workings of PRIMENET, see the System
Administrator's Guide, IDR3109. PRIMENET also supports
network-primitive subroutine calls for program-level communication
between processes running on different processors. These subroutines
are described in PTU52.

Remote Login

The LOGIN command accepts a nodename argument that enables you to log
in to a remote system:

LOGIN ufd-name [password] [-ON nodename]

If -ON nodename is omitted, an attempt is made to log into ufd-name on
the local system only. If nodename is the name of the local node, the
login attempt is done locally without the use of PRIMENET.

REV. 0 4 7 - 9 July 1978

PTU47 PART 2 REV. 15 FORTRAN

If the LOGIN command fails for any reason (e.g., NOT FOUND, NO RIGHT,
BAD PASSWORD), the user's PRIMENET connection is broken, and the
terminal is reconnected to the local process (not logged in).

On a terminal logged in to a remote processor, the command LOGOUT logs
out the process, breaks the remote connection over PRIMENET, and
reconnects the terminal to its local process (not logged in). Due to
network delays, all input characters typed between the LOGOUT command
and the response OK are discarded.

Forced Logout

The operator of the local processor system can enter the supervisor
terminal command

LOGOUT -userno

to force the logout of a specified user connected via PRIMENET. userno
is the number of a local user process, as shown in the NO column of a
STATUS USERS listing (described later).

This command unconditionally logs out the specified user and returns
the process to a pool of available remote login server processes; the
PRIMENET connection for this terminal/process is broken, and the
terminal is reconnected to its local process (not logged in).

Network Information in STATUS Printouts

The STATUS command prints network-related information that identifies
local and remote user numbers, logical and physical disk assignments,
and line number assignments.

STATUS USERS distinguishes between local and remote users:

OK, STATUS USERS

USER NO LIN PDEVS
PENNY 7 5 50460
CLEMLI 11 11 21460
SUREN 12 12 61060
DOUG.V 14 14 61060
DOUROS 17 17 61060
BD 20 22 10460
COTTON 21 23 21460
HANIF 22 24 61060
HOWIEC 26 30 10460
EMBERS 28 32 21460
TEKMAN 29 33 50460
TEKMAN 30 34 50460
LINDA 32 36 61060
TEKMAN 33 37 50460
SPORER 39 45 21460
BARRIE 40 46 21460

REV. 0 4 7 - 1 0 July 1978

PTU47 PART 2 REV. 15 FORTRAN

MAGGIE 41 47
TEKMAN 43 51
BD 45 53
STEVEN 49 75
SYSTEM 57 77
FAM 58 77
SYSTEM 59 77
SYSTEM 62 77

50460
50460
460 21460
10460 (FROM SYSD
460
460 (2)
61060
460

USR#43)

This example shows that user STEVEN is local user number 49, is a
remote login on line 75 (one of the PRIMENET lines), is currently
accessing local physical device 10460, and is logged in from nodename
SYSD, where he is user number 43.

STATUS DISKS now shows logical disk number assignments
system, including disk volumes on other nodes:

for the local

OK, STATUS

DISK
SPOOLH
PERIPH
CPUGRP
DOCUMN
PRI550
SPOOLB
SOFTWR
DBTEST
M150A1
M150B1
SPOOLD
TRANS
DBGRP
TEST
DTEST

LDEV
0
1
2
3
4
5
6
7
10
11
12
13
14
15
16

DISKS

PDEV
460

10460
21460
50460
61060
460
3462
71063
60460
70460
460

21460
51060
71061
2062

SYSN

SYSB
SYSB
SYSB
SYSB
SYSB
SYSD
SYSD
SYSD
SYSD
SYSD

This example shows the status of a three-node system. The first two
columns are the packnames and logical device numbers for the local
system, and the fourth column shows the nodenames of the remote
processors.

The STATUS NETWORK command gives the names and states of all
the network:

nodes in

OK, STATUS NETWORK

SMLC NETWORK

NODE STATE
HARDWR ****
RSRCH1 UP

REV. 0 47 11 July 1978

PTU47 PART 2 REV. 15 FORTRAN

IPC NETWORK

NODE STATE
HARDWR ****
SYSB UP
SYSD UP

This shows the state of a four-node network as it would be printed for
a local user on the HARDWR node. The UP state means that the node is
configured and functioning.

Attaching to Remote Directories

To attach to a directory located in a disk volume at another node,
specify the logical disk number of the remote disk (determined from a
STATUS DISKS printout) as the ldisk parameter of the ATTACH command:

ATTACH directory [password] [ldisk] [key]

*f ldisk is not specified, the attempt to ATTACH to the remote disk
will work only if there is no directory of the same name on a lower
logical device number.

Selecting CX Queues on Other Nodes

The CX command line now allows you to place jobs on, or check status
of, the CX queue on a remote system:

CX(filename| [-ON ldisk]
(option /

ldisk is the (local) logical disk number of a remote disk containing a
CX queue.

Selecting Home Spool Queue

In a network with more than one spool queue in operation, any SPOOL
request is intercepted by the first spooler which is ready to accept a
job and has the right form type. To make sure the printout takes place
on your local spooler, use the -HOME argument in the SPOOL COMMAND:

SPOOL filename [-HOME]

MODIFIED COMMANDS AND SUBSYSTEMS

Commands and subsystems that have user-visible changes at Rev. 15 are
described below in alphabetical order. (See the preceding section on
networks for changes to ATTACH, CX, LOGIN,, and SPOOL.)

REV. 0 4 7 - 1 2 July 1978

PTU47 PART 2 REV. 15 FORTRAN

DELSEG

DELSEG is an internal command which releases segments assigned to the
user by SEG. The command format is:

DELSEG /segno I
I ALL /

where segno is the number of the segment to be freed. segno must be
greater than or equal to 2000 (octal) and not equal to 6000 (octal).
Specifying ALL as the argument frees all segments assigned to the user
issuing the command. Deleting an already nonexistent segment has no
effect. Attempting to delete an illegal segment number yields the
error message BAD PARAMETER.

FUTIL

Three new commands have been put into FUTIL at Revision 15. These
commands are SRWLOC, TRESRW and UFDSRW. They set the per-file
read-write lock for a file, a tree, and all files in the current UFD,
respectively. The format of these commands correspond to the format of
the protect-class commands, i.e.:

SRWLOC filename lock-number
TRESRW pathname lock-number
UFDSRW lock-number n-levels

lock-number is the read-write lock. If omitted, 0 is the default.
n-levels is the number of levels to go down doing the setting. The
read-write lock is interpreted as follows: 0 means use the system
read-write lock, 1 means allow multiple readers or one writer, 2 means
allow multiple readers and one writer, 3 means allow multiple readers
and multiple writers.

To output a file's read-write lock, use the RWLOCK option in the LISTF
command in FUTIL. A read-write lock of 0 appears as "SYS", 1 appears
as "W/NR", 2 appears as "1WNR", and 3 is shown by "NWNR".

FUTIL now ignores null lines and accepts lower case input. However,
passwords must be entered in the same case as they were assigned.

The CLEAN command no longer leaves protection for files below current
level at 7 0. Instead, it leaves them the way they were.

Volume names or numbers used as a prefix (i.e., beginning with <) must
now also end with >.

The first digit of a segment directory file or sub-segment directory,
(i.e., the first digit of the number in parentheses) must be a digit.

REV. 0 4 7 - 1 3 July 1978

PTU47 PART 2 REV. 15 FORTRAN

LOAD - REV. 15 VIRTUAL LOADER

At REV. 15 the R-mode loader (LOAD) is a virtual loader; it has the
capability of loading to a temporary file when the size of an object
module exceeds the available space in memory. Following is a summary
of the new features. For full details, see PTU50.

LOAD first attempts to load into the actual memory locations specified
by the object module. As delivered, the buffer space is all of memory
below '122000. For programs compiled in 32R mode, the entire load may
be completed in real memory; in that case the action is the same as
previous loaders, and the program can be started directly by the
Execute command. Existing command files should execute exactly as
before.

For larger 64R mode programs, the loader uses memory as temporary
buffer space which can be paged into a temporary file opened in the
home UFD. This permits loadng of programs of up to 64K words. This
requires that the load module be SAVEd before an EXECUTE. The
temporary file is opened when LOAD is first invoked and is not closed
until a QUIT or EXECUTE command is given.

Because the loader must remain attached to the home UFD throughout
loading, for access to the temporary file, it is no longer possible to
do temporary ATTACHes to other directories. Instead, treenames should
be used in LOAD commands when files in other directories are required.
Existing command files should be modified accordingly.

New Features

• Improved error reporting - short text descriptions instead of
2-letter codes.

• Quit and Attach may be abbreviated "Q" and "A".

• LOAD family of subcommands (LO, FO, P/, F/) enhanced to accept
base area definitions:

LO)
FO ((Addrss]

P/LO (filename <J * > [setbase-] [s e tbase -2] . . . [setbase-9]
F/LO) (symbol)

• treenames are accepted wherever filenames are required.

• New commands

PB Set PBREAK to new value

SY Define or equate symbols

REV. 0 4 7 - 1 4 July 1978

PTU47 PART 2 REV. 15 FORTRAN

CH Check PBRK against symbol value

ER Control error handling

SZ Enable/disable use of Sector 0 for links

SS Save Symbols (prevent specified symbols from being
deleted by EXpunge).

DC Defer common definition.

EN Entire Save. Save memory image of loader and temporary
file for creation of overlays

PA Pause. Return to PRIMOS for internal command
execution

• Error messages

Error reporting for the new Loader has been improved over older
versions to include short text descriptions; most, therefore,
are self-explanatory. The following are of particular interest
to the user:

PROGRAM-COMMON OVERLAP - the module being loaded is attempting to
load code into an area reserved for common. Use the loader's
COMMON command to increase the octal location of common (maximum
setting is '177777).

xxxxxx MULTIPLE INDIRECT - a module loadng in 64R mode requires a
second level of indirection at location xxxxxx. Insert a Mode
D64R command in the load sequence.

BASE SECTOR 0 FULL - all locations in the sector zero base area
have been used. Use the Automatic command to generate additional
base areas.

MIDAS

MIDAS for Rev. 15 contains no new features. The only enhancement to
MIDAS has been the creation of a version of MIDAS which can be shared
on the Prime 400 (or higher) for V-mode programs. For details, see
PTU54.

SEG

At Rev. 15, there are the following enhancements to SEG as summarized
below. For details, see PTU50.

1. Words 0 through '40 in all procedure segments (and segment '4000)

REV. 0 4 7 - 1 5 July 1978

PTU47 PART 2 REV. 15 FORTRAN

must be reserved for use by SEG and the operating system. These
locations cannot be used as constants or temporaries.

2. SEG now supports up to 256 ('400) segments. Split segments no
longer occupy two segment positions.

3. All commands which leave SEG's Loader (QUit, REturn and Execute)
now perform the SAve function. This insures that SEG's DELETE
command will work on all SEG run files.

4. QUit and ATtach may now be abbreviated to Q and A respectively.

5. SEG's loader now keeps track of the length of COMMON blocks up to
one segment in length. An attempt to redefine a COMMON block to
a longer length will cause an error. Redefinition to a shorter
length is not flagged.

6. Two new map commands have been added:

MA ... 10 Causes all symbols to be printed out one per line
in ascending order by address.

MA ... 11 Causes all symbols to be printed out in
alphabetical order, one per line.

In both cases, the symbol is described by type (COMMON, DIRECT
ENTRY CALL, etc).

7. Map format has changed slightly to allow eight-character file
names and the COMMON block section has been reformatted to
include the length of the COMMON block when this is known. The
length of the COMMON block is printed in octal. Also, the map
format for procedure symbols has been enhanced. SEG now prints
the length of the link frame and the segment of the link frame
wen these are known.

8. *SYM now reports the number of symbols in the symbol table (in
octal).

9. It is no longer necessary to worry about mixing default loading
(SEG assigns the segment numbers) and specific loading (the user
assigns the segment numbers). The command formats have not
changed, but SEG will now prevent segment assignment conflicts.
In addition, SEG keeps track of the end of the procedure portion
of a split segment and will not load procedure into the data
portion. A segment may be split anywhere (not just on '4000 word
boundaries. In addition, programs may now be loaded under the MI
option (see below) which permits mixing of data and procedure in
the same unsplit segment. This feature may make split segments
obsolete.

10. SEG now assigns a stack to a shared procedure in the user's
segments (above '4000) rather than placing it in the first

REV. 0 4 7 - 1 6 July 1978

PTU47 PART 2 REV. 15 FORTRAN

available procedure segment which is usually below '4000.

11. There is a new command at SEG command level which allows the user
to determine the Rev. of SEG. The format for this command is
VE(rsion).

12. SEG's Loader has a few new commands. These are:

SE (setbase)
SS (save symbol)
MI (mix procedure/data)
MV (move)

SORT

Sort accepts upper and lower case characters. Lower case characters
are sorted as if they were upper case, but they appear as lower case
characters in the output file.

TERM COMMAND

The TERM command is a useful tool to control the duplex of a terminal
as well as setting the kill and erase characters and enabling or
disabling the BREAK key or enabling the X-ONA-OFF option. The command
line for the REV. 15 TERM command will look for options to be preceded
by a dash (-), the old way (options without the dash) will still work
for compatibility. The rest of this document will be dedicated to
explaining the different command line formats for the TERM command.

A.) TERM

Typing TERM without any options will have the program print a
general list of possible command line formats.

B.) TERM -ERASE (char)

This will set the erase character from its current value to that
of char which is specified in the command line.

C. TERM -KILL (char)

This will set the kill character from its current value to that of
char which is specified in the command line.

Note:

char must be a single character and the parenthesis are not
to be specfied.

D.) TERM -BREAK ON

REV. 0 4 7 - 1 7 July 1978

PTU47 PART 2 REV. 15 FORTRAN

This enables the BREAK or [CONTRL-P] key.

E.) TERM -BREAK OFF

This disables the BREAK or [CONTRL-P] key.

F.) TERM -BALF -[XOFF or NOXOFF] -[LF or NOLF]

The parameters in the brackets are optional. The HALF duplex key
will not echo back input from the terminal. The NOLF will not echo a
line feed after a carriage return. A LF will echo a line feed after a
carriage return. An XOFF will enable the X-OFF/X-ON feature, a NOXOFF
will disable the X-OFF/X-ON feature. If the [XOFF or NOXOFF] option is
omitted the TERM command will default to the state of the X-OFF/X-ON
that existed before the TERM command was invoked. When enabled,
CONTROL-S performs the X-OFF and CONTROL-^ the X-ON function.

G.) TERM -FULL -[XOFF or NOXOFF]

The FULL duplex key will echo back input from the keyboard to the
terminal screen. The [XOFF or NOXOFF] feature will work as described
in paragraph F.

H-) TERM -[XOFF or NOXOFF]

This form will set the terminal to FULL duplex (default value) and
enable or disable the X-OFF/X-ON according to the specified command in
the command line.

I.) TERM -DISPLAY

This format will print out the terminal's kill and erase
chacacters as well as whether the terminal is in full or half duplex or
if the X-ON/X-OFF feature is enabled, or if an X-OFF (CONTRL-S) has
been received.

SHARED LIBRARIES

At Rev. 15 certain V-Mode libraries can be established as shared
libraries by the System Administrator. For more information see the
Rev. 15 version of IDR3109, the System Administrator's Guide.

REV. 0 4 7 - 1 8 July 1978

PTU47 PART 3 REV. 15 FORTRAN

PART 3

ERRATA TO PDR3057, FORTRAN PROGRAMMER'S GUIDE

All references to PRIMOS INTERACTIVE USER GUIDE, MAN2602 and its
updates, PTU31 and PTU42 should be replaced by REFERENCE GUIDE, PRIMOS
COMMANDS, PDR3108 (pp. 1-11, 2-1, 10-1, 11-1).

Page Change

1-3 In the lower boxes of the figure, add "P350".

3-13 In the -DEFER option add: The time should be enclosed in
single quotes.

15-3 In the range of long integers: 21474^3647 should be
2147483647.

15-10 Change Internal Function to Statement Function.

Change the CALL example to CALL subrname [(arg-1,...arg-n)]

16-17 In the title: insert "Default" before "FORTRAN".

16-22 The line drawn above "General" should be drawn below
"General".

19-3 In the D/xx command, the last line should be:

D/ may be combined with F/ as either D/F/xx or F/D/xx.

20-5 In EXP add: SP=EXP(SP).

A-2 In the error CONSTANT REQUIRED: "three" should be "where";
"statment" should be "statement".

A-23 add the following error message:

NULL READ UNIT PRIMOS

Program has attempted to read with a bad unit number. This
may be caused by the program overwriting itself (array out of
bounds).

C-2 Right-hand column header. Change "Keyboard Input" to
"Control Characters".

REV. 0 4 7 - 1 9 July 1978

PTU47 PART 3 REV. 15 FORTRAN

Note;

The following corrections were previously distributed in
OOPS sheet PDR3057-001.

Page Change

1-5 Replace description of + character with the following:

i Escape symbol used in text editor to enter octal codes of
non-printing characters, as in +207 for CTRL-G or Bell code.

1-6 Under Filename Conventions change the definition of C^filename
to "Command Input File" and add the following entries:

C*-filename Command Output File

Note

On seme output devices backarrow («-) may print as
underscore ().

1-9 in Functions change "logical" to "Boolean (logical)".

1-10 in Sequential Job Processing, the second sentence should read:

"Sequential job processing queues requests for phantom users
and then executes these jobs one at a time."

1-12 changes comment line from "*" to "/*. (The old comment still
works)"

1-13 in paragraph 2 under Libraries change "logical" to "Boolean
(logical) ."

REV. 0 4 7 - 2 0 July 1978

PTU47 PART 3 REV. 15 FORTRAN

1-14 in FORMS, second sentence should read:

"These screen forms are an extremely useful tool for the appli­
cations programmer writing data entry programs."

3-2 at bottom of page: "C treename" should be "C filename"

3-4 data representation table should be:

ASCII transfer

BCD translation to ASCII from 7-track tape

BINARY transfer verbatim

EBCDIC transfer to ASCII

3-5 Reading Punched Paper Tape add sentence. First load tape into
reader; then assign tape reader.

After "input frcm tape reader" add "; tape is being read."

3-6 Under Special Characters replace second paragraph with:

In input mode the semicolon (;) is equivalent to a CR (ends
a line of input). In edit mode semicolons in a character
string are treated as a printing character; otherwise,
semicolons separate multiple commands entered on the same
line.

3-7 Tab Settings in the last sentence change "commands" to "comments"

Modifying change "relative" to "absolute"

3-9 For CHANGE, alter "[n] [G] " to "[G] [n]"

For ERASE, change definition to "Sets erase character to character"

3-10 For KILL, change definition to "Sets kill character to character"

LINESZ LINESZ [n]

3-11 For MODIFY, change "[n] [G]" to "[G] [n]"

Replace entire MOVE entry with:

MOVE buffer-1 / / g ^ ^ " / \ Move string or contents of buffer-2

into buffer-1

REV. 0 4 7 - 2 1 July 1978

P I W PART 3 REV. 15 FORTRAN

13 *[n] should be *[n]

F / ;D;n; *10 should be F /;D? *10

5-2 bottom of page: under PRIMOS II for FILMEM ALL

clear all user space
except locations occupied by PRIMOS II

6-9 add at top of page

"The file filename must be a file containing object text
compiled (or"

13-5 in answers to KEY SIZE delete "W" (3 places)

13-9 DBMS change "COBOL" to "FORTRAN" (2 places)

15-4 Replace the sentence beginning "Long integers range..."

with

"Long in tegers range frcm 0{-.000000) t o 2147483647 (: 17777777777)
and frcm -2147483648 {-.20000000000) to - 1 (:37777777777). The
range i s frcm -(2**31) to +(2**31-1) ."

15-5 Double Precision Numbers add a t end "Only 2 d i g i t s can be pr in ted

for the exponents."

16-16 PRINT should read:

PRINT f [, l i s t]
P r in t s the l i s t of elements on the u s e r ' s terminal according
t o the format specified in statement f. Equivalent to
WRITE (l , f) [l i s t] .

20-3 AMAX0, AMAX1, AMIN0, AMIN1. Remove V-identi ty r e s t r i c t i o i

20-4 DATAN2 "CP2" should be "DP2"

20-5 DMAXl, DMTNl, Remove V-identity r e s t r i c t i o n

20-7 MAX0, MAXl, MEN0, MINI. Remove V-identi ty r e s t r i c t i o n

RND-Ln table heading " I I" should be "I" ;"12" should be "SP"

20-43 words-transmitted "RNW" should be " th i s parameter"

C-l CTRL-P " • 200" should be " ' 220".

REV. 0 47 - 22 July 1978

A P P E N D I C E S

r

PDR3057 ERROR MESSAGES

APPENDIX A

ERROR MESSAGES

INTRODUCTION

Error messages are given in the following order:

FORTRAN Compiler Error Messages
Linking Loader Error Messages
SEG Loader Error Messages
Run-Time Error Messages

In each group errors are listed alphabetically.

Run-time error messages beginning with a filename, device name,
UFDname, etc., are alphabetized according to the first word which is
constant. The user should have no trouble in determining this word
(the second word in the message). Leading asterisks, etc., are ignored
in alphabetizing. All run-time errors have been grouped together to
facilitate lookup by the user.

November 1977

APPENDIX A PDR3057

Table A-l. Compiler Error Messages

Error Message Meaning

ARC LIST REQUIRED

ARRAY NAME REQUIRED

ARRAY/BLOCK OVERFLOW

CHAR STRING SIZE

COMMON NAME ILL.

COMPILER OVERFLOW

CONFLICTING DECLARN

CONSTANT REQUIRED

CONSTANT TOO LARGE

DATA MODE ERROR

DIVISION BY ZERO

EXCESS CONSTANTS

EXCESS SUBSCRIPTS

FUNCT VAL UNDEFINED

Argument list not specified in FUNCTION
statement.

Something other than an array name appeared in
a position where only an array name is
allowed, (example: ENCODE or DECODE
statement)

Array/block exceeds space allocated to user.

A character string was not terminated, or a
string in a DATA statement was longer than the
associated variable list.

Illegal use of a name already declared in
COMMON.

Insufficient memory to compile program.

Name(s) declared as more than one data mode.

A name appeared tteee-only a constant or
parameter is allowed, (i.e., DIMENSION
-sfeâ entain a main program)

Constant exponent excessive for data type.

Illegal mode mixing in expression, expression
mode not of required type, or constant in DATA
statement is of different mode than associated
name in variable list.

Attempt has been made to divide by a zero
constant.

Number of constants in DATA statement exceed
variables for storing them.

Too many subscripts in EQUIVALENCE or DATA
list item.

The function name was not assigned a value in
FUNCTION subprogram.

REV. 0

PDR3057 ERROR MESSAGES

GBL MDE/IMPL CNFLCT

ILL. CONSTANT EXPR.

ILL. DO TERMINATION

ILL. EQUIVALENCE

ILL. LOGICAL IF

ILL. OVER 64K COMMON

ILL. STMT NO. REF

ILL. UNARY OP USAGE

ILL. USE OF ARC

ILL. USE OF CLMN. 6

ILL. USE OF STMT

INCONSISTENT USAGE

INTEGER REQUIRED

MULT DEF STMT NO.

NAME REQUIRED

IMPLICIT statement and global mode
specification may not be used in same program
unit.

Variables found in a PARAMETER statement.

Improper DO loop nesting, or an illegal
statement terminating a DO loop.

EQUIVALENCE group violates EQUIVALENCE rules
or specifies an impossible equivalencing.

A logical IF contained in a logical IF, or a
DO statement contained in a logical IF.

A COMMON area exceeds 64K words of user
memory.

Reference to a specification statement number.

Improper use of an operator in an expression.

SUBROUTINE or FUNCTION statement used in
COMMON, EQUIVALENCE, or DATA statement.

Continuation line found without a continuation
or statement line preceding it.

Statement illegal in context of the program.
For example, RETURN in a main program,
SUBROUTINE not the first statement, or
specification statements out of order. If an
undeclared array name is used on the left in
an assignment statement, the compiler will
assume it is a statement function definition
and therefore generate this error.

The use of the name listed in the error
message conflicts with earlier usage. This
message also will be generated at the END
statement in a SUBROUTINE subprogram if the
subroutine name is used within the subprogram.

A non-integer name or constant appeared where
only an integer name or constant is allowed.

The statement number of the current line has
already been defined.

A constant appeared where only a name is
allowed.

A November 1977

APPENDIX A PDR3057

NO END STMT

NO PATH TO STMT

NONCOMMON DATA

PARENTHESIS MISSING

PROG SIZE OVERFLOW

SAVE ITEM ILLEGAL

STMT NAME SPELLING

STMT NO. MISSING

SUBPGM/ARR NAME ILL

SUBPROGRAM NAME ILL

SYMBOLIC SUBSCR ILL

SYNTAX ERROR

UNDECLARED VARIABLE

UNDEFINED STMT NO.

UNRECOGNIZED STMT

The last statement in the source was not an
END statement.

The current statement does not have a
statement number and the previous statement
was an unconditional transfer of control.

A BLOCK DATA subprogram initialized data not
defined in COMMON or contained executable
statements.

Incorrect parenthesis used in an implied DO
loop in an I/O statement.

Program too large for allocated user space.

Improper item in SAVE statement (function
name, array element, etc).

A statement name was recognized by its first
four characters, but the remaining spelling
was incorrect.

A FORMAT statement appeared without a
statement number.

Illegal usage of subprogram or array name.

Illegal usage of subprogram name.

Illegal usage of symbolic subscript in a
specification statement.

General syntax error, context usually shows
offending character (s) .

The listed variable did not appear in a
specification statement (generated when the
undeclared variable check option is enabled).

The listed statement number was not defined in
the subprogram. The listed line number is the
line number of the last reference to the
statement number.

The compiler could not identify the statement.

REV. 0 A

PDR3057 ERROR MESSAGES

Table A-2. Linking Loader Error Messages

Error Messages Meaning

CM Command error. Illegal command format.

GT Group Type error. The Loader has encountered
an unrecognizable piece of object text.
Loading is discontinued. If object module is
FORTRAN, make sure that it was compiled
without errors.

The source module is not an object file
(output of FTN, PMA, etc.) or is a
segmented-address object file (64V).

MI xxxxxx Multiple Indirect. While linking in 64R mode,
the Loader attempted to add indirection to an
already indirect instruction at location
xxxxxx. The contents of xxxxxx are the proper
flag, tag, and op code with an address of
zero. Loading continues.

Object code may be in 64V mode; recompile and
then restart load.

MO Memory Overflow Errors

As users' programs become larger, MO (memory
overflow) errors become more common. This
section contains a description of the several
typical causes of these errors and suggested
solutions to these causes.

When MO error occurs, the user should do a
'MA 2' and examine the map for any of the
following possible situations:

a. The address of the bottom of the symbol
table (*SYM) is at or close to *PBRK. This
indicates that there is not enough room below
the Loader for the whole program. HILOAD will
probably solve the problem - assuming the user
is not already using HILOAD.

b. The sector zero base area is full - the
next free location is '1000. The size of the
sector zero base may be increased by a
SETB '100 command at the beginning of the load

A - 5 November 1977

APPENDIX A PDR3057

- if locations '100 to '200 are free - or an
AU command may be used to insert base areas
throughout the load. Alternatively, recompile
using the Loader base area conservation
option, (see AUTOMATIC, SETBASE)

c. *CMLOW is near *PBRK. COMMON should be
moved to higher memory using the COMMON
command. Re-initialize using the FILMEM
command. If COMMON must be moved above
'100000, it may be necessary to recompile the
program in 64R mode and the program load must
begin with a MO D64R command, (see COMMON,
MODE)

d. The program and data are too large to fit
into 64K of memory. The program modules
should be recompiled in 64V mode and loaded
using SEG (see Section 6).

e. None of the above. The user's program
requires initialized COMMON. COMMON is
usually defaulted to overwrite the space used
by the loader. Those locations between the
bottom of the symbol table and the top of the
Loader cannot be initialized as this would
destroy the loader. The solution is to use a
COMMON command to move COMMON out of the way
of the loader. Possibly the user will want to
use HILOAD to permit COMMON to use the
locations normally used by the Loader, (see
COMMON)

OR Out of Reach. An attempt has been made to
reference a COMMON area that is out of reach
of the load mode.

Begin the load with an MO D64R command, or
move COMMON to '100000 or lower with the CO
command, (see COMMON, MODE)

NS Never Sectored. Code is being loaded in 16S
or 32S mode, which will not properly execute
in a sectored mode. Loading is discontinued.

Don't include the D16S or D32S command in the
load session, or check the PMA source module
to see if it includes one of these commands,
(see MODE). Unlikely error for FORTRAN
programmer to encounter.

N6 Never 64R mode. Code is being loaded in 64R
mode, which will not execute properly.

REV. 0 A

PDR3057 ERROR MESSAGES

Loading is discontinued.

Recompile the source files in 64R mode, or
remove a D64R command from the load session,
or look for a PMA module which has set the
load mode to 64R. (see MODE)

November 1977

APPENDIX A PDR3057

Table A-3. SEG Loader Error Messages

Error Message Meaning

BAD OBJECT FILE User is attempting to load file which
has faulty code. The file may not be
an object file or it may be
incorrectly compiled. FATAL, the
load must be aborted.

CAN'T LOAD IN SECTORED MODE

CAN'T LOAD IN 64V OR 64R MODE

The Loader is attempting to load code
in sectored mode which has not been
compiled in sectored mode. This
could arise if trying to load a
module compiled or assembled in 16S
or 32S mode. It is unlikely the
average applications programmer will
encounter this. FATAL, abort load.

The Loader is attempting to load code
in 64V mode which is not compiled in
that mode. This would arise if:

COMMAND ERROR

1. A program was compiled in a
mode other than 64V.

2. A PMA module is written in code
other than 64V and its mode is not
specified.

In case 1, the user should recompile
the program.

In case 2, which the average
applications programmer is unlikely
to encounter, the PMA module must be
modified. FATAL, abort load.

An unrecognized command was entered
or the filenames/parameters following
the command are incorrect. Usually
not fatal.

REV. 0 A

PDR3057 ERROR MESSAGES

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT
An attempt was made to load a 64R
mode program, causing a reference to
an illegal segment number. Recompile
in 64V mode. FATAL, abort load.

ILLEGAL SPLIT ADDRESS Incorrect use of the Loader's SPLIT
command. Segments may be split only
at '4000 boundaries, only (i.e.,
'4000, '10000, '14000, etc.) Not
fatal; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT
An attempt was made to load a 64R
mode progran wherein COMMON would be
allocated to an illegal segment
number. Recompile in 64V mode.
FATAL, abort load.

NO FREE SEGMENTS TO ASSIGN All SEG's segments have been
allocated; no more are available at
present. Use SYMBOL command to
eliminate COMMON from assigned
segments, thus reducing the number of
assigned segments required. (User
may need larger version of SEG and
PRIMOS). FATAL, abort load.

NO ROOM IN SYMBOL TABLE Unlikely to occur; no user solution.
A new issue of SEG with a bigger
symbol table is required; check with
analyst. As a temporary measure,
user may try to reduce number of
symbols used in program. FATAL,
abort load.

REFERENCE TO UNDEFINED SEGMENT

SECTOR ZERO BASE AREA FULL

Almost always caused by improper use
of the SYMBOL command to allocate
initialized COMMON. Initialized
COMMON cannot be located with the
SYMBOL command; use R/SYMBOL or
A/SYMBOL instead.

Extremely unlikely to occur. Not
correctable at applications level.
Check with analyst. FATAL, abort
load.

A November 1977

APPENDIX A PDR3057

SEGMENT WRAP AROUND TO ZERO An attempt has been made to load a
64R mode program. The program has
exceeded 64K and is trying to be
loaded over code previously loaded.
Recompile in 64V mode. FATAL, abort
load.

REV. 0 A - 10

PDR3057 ERROR MESSAGES

Table A-4
Run-Time Error Messages

Message Meaning Origin

ACCESS VIOLATION 64V mode

Attempt to perform operations in
segments to which user has no right.

****AD R-mode function

Overflow or underflow in
double-precision addition/subtraction
(A$66,S$66).

ALL REMOTE UNITS IN USE New file call

Attempt made to assign a remote unit
when none are available. (Network
error) [E$FUIU]

**** ALOG/ALOG 10 - ARGUMENT <=0 V-mode function

Argument not greater than zero used in
logarithm (ALOG, ALOG 10) function.

<filename> ALREADY EXISTS Old file call

Attempt to create a file or UFD with
the name of one already existing. [CZ]

ALREADY EXISTS New file call

Attempt made to create, in the UFD, a
sub-UFD with the same name as one
already existing. (CREA$$) [E$EXST]

****AT R-mode function

Both arguments are zero in the ATAN2
function.

- 11 November 1977

APPENDIX A PDR3057

**** ATAN2 - BOTH ARGUMENTS = 0 V-mode function

Both arguments are zero in the ATAN2
function.

**** ATTDEV - BAD UNIT V-mode call

Incorrect logical device unit number in
the ATTDEV subroutine call.

BAD CALL TO SEARCH Old file call

Error in calling the SEARCH subroutine,
e.g., incorrect parameter. [SA]

BAD DAM FILE Old file call

The DAM file specified has been
corrupted - either by the programmer or
by a system problem. [SS]

BAD DAM FILE New file call

The DAM file specified has been
corrupted - either by the programmer or
by a system problem. (PRWF$$, SRCH$$).
[E$BDAM]

BAD FAM SVC New file call

System problem; will not be seen by
applications programmer [E$BFSV]

BAD KEY New file call

Incorrect key value specified in
subroutine argument. (ATCH$$, RDEN$$,
SATR$$, SRCH$$, SGDR$$) [E$BKEY]

BAD PARAMETER Old file call

Incorrect parameter value in subroutine
call [SA]

REV. 0 A - 12

PDR3057 ERROR MESSAGES

BAD PASSWORD Old file call

Incorrect password specified in ATTACH
subroutine. Returns to PRIMOS level
attached to no UFD. [AN]

BAD PASSWORD New f i l e c a l l

Incorrect password specified in ATCH$$
subroutine. Returns to PRIMOS level
attached to no UFD. [ATCH$$] [E$BPAS]

Note

To protect UFD privacy the
system does not allow the
user to trap BAD PASSWORD
errors.

BAD RTNREC PRIMOS

System error.

BAD SEGDIR UNIT New file call

Error generated in accessing segment
directory, i.e., PRIMOS file unit
specified is not a segment directory.
(SRCH$$) [E$BSUN]

BAD SEGMENT NUMBER New file call

Attempt made to access segment number
outside valid range. [E$BSGN]

BAD SVC PRIMOS

Bad supervisor call. In FORTRAN
usually caused by program writing over
itself.

BAD TRUNCATE OF SEGDIR New file call

Error encountered in truncating segment
directory. (SGDR$$) [E$BTRAN]

- 13 November 1977

APPENDIX A PDR3057

BAD UFD New file call

UFD has become corrupted. (ATCH$$,
CREA$$, GPAS$$, RDEN$$, SATR$$, SRCH$$)
[E$BUFD]. Calls to RDEN$$ return this
as a trappable error; other commands
return to the PRIMOS command level.

BAD UNIT NUMBER New file call

PRIMOS file unit number specified is
invalid - outside legal range.
(PRWF$$, RDEN$$, SRCH$$, SGDR$$).
[E$BUNT]

BEGINNING OF FILE New file call

Attempt was made to access locations
before the beginning of the file.
(PRWF$$, RDEN$$, SGDR$$) [E$BOF]

****BN<n> R-mode function

Device error in REWIND command on
FORTRAN logical unit n.

BUFFER TOO SMALL New file call

Buffer as defined is not large enough
to accomodate entry to be read into it.
(RDEN$$) [E$BFTS]

**** DATAN - BAD ARGUMENT V-mode function

The second argument in the DATAN2
function is zero.

****DE R-mode function

The exponent of a double-precision
number has overflowed.

REV. 0 A - 14

PDR3057 ERROR MESSAGES

DEVICE IN USE New file call

Attempt was made to ASSIGN a device
currently assigned to another user.
[E$DVTU]

DEVICE NOT ASSIGNED New file call

Attempt was made to perform I/O
operations on a device before assigning
that device. [E$NASS]

DEVICE NOT STARTED New file call

Attempt was made to access a disk not
physically or logically connected to
the system; if disk must be accessed,
systems manager must start it up.
[E$DNS]

**** DEXP - ARGUMENT TOO LARGE V-mode function

The argument of the DEXP function is
too large; i.e., it will give a result
outside the legal range.

**** DEXP - OVERFLOW/UNDERFLOW V-mode function

An overflow or underflow condition
occurred in calculating the DEXP
function.

DIRECTORY NOT EMPTY New file call

Attempt was made to delete a non-empty
directory. (SRCH$$) [E$DNTE]

DISK FULL Old file call

No more room for creating/extending any
type of file on disk. [DJ]

- 15 November 1977

APPENDIX A PDR3057

DISK FULL New file call

No more room for creating/extending any
type of file on disk. (CREA$$, PRWF$$,
SRCH$$f SGDR$$). [E$DKFL]

Note

Space may be made available.
Use the internal PRIMOS
commands ATTACH, LISTF, and
DELETE to remove files which
are no longer needed.

DISK I/O ERROR New file call

A read/write error was encountered in
accessing disk. Returns immediately to
PRIMOS level. Not correctable by
applications programmer. (ATCH$$,
CREA$$, GPAS$$, PRWF$$, RDEN$$, SATR$$,
SRCH$$, SGDR$$). [E$DISK]

DK ERROR Old file call

A read/write error was encountered in
accessing disk. [WB]

****DL R-mode function

Argument was not greater than zero in
DLOG or DL0G2 function.

**** DLOG/DLOG2 - ARGUMENT <=0 V-mode function

Argument not greater than zero used in
DLOG or DL0G2 function.

****DN <n> R-mode function

Device error (end of file) on FORTRAN
logical unit n.

**** DSIN/DCOS - ARGUMENT RANGE ERROR V-mode function

Argument outside legal range for DSIN

REV. 0 A - 16

PDR3057 ERROR MESSAGES

or DCOS function.

**** DSQRT - ARGUMENT <0 V-mode function

Negative argument in DSQRT function.

****DT R-mode function

Second argument i s zero in DATAN2
function. (D$22)

DUPLICATE NAME Old f i l e c a l l

Attempt to create/rename a f i l e with
the name of an exis t ing f i l e . [CZ]

****DZ R-mode function

Attempt to divide by zero
(double-precision)

END OF FILE New f i l e c a l l

Attempt to access location af ter the
end of the f i l e . (PRWF$$, RDEN$$,
SGDR$$) [E$EOF]

****EQ R-mode function

Exponent overflow. (A$81)

****EX R-mode function

Exponent function value too large in
EXP or DEXP function.

**** EXP - ARGUMENT TOO LARGE V-mode function

The argument of the EXP function i s too
l a rge , i . e . , i t wil l give a r e su l t
outside the legal range.

*?** EXP - OVERFLOW V-mode function

A - 17 November 1977

APPENDIX A PDR3057

Overflow occurred in calculating the
EXP function.

FAM ABORT New file call

System error. [E$FABT]

FAM - BAD STARTUP New file call

System error. [E$FBST]

FAM OP NOT COMPLETE New file call

Network error. [E$FONC]

****FE R-mode funciton

Error in FORMAT statement. FORMAT
statements are not completely checked
at compile time. (F$IO)

FILE IN USE New file call

Attempt made to open a file already
opened or close/delete a file opened by
another user, etc. (SRCH$$) [E$FDEL]

FILE OPEN ON DELETE New file call

Attempt made to delete a file which is
open. (SRCH$$) [E$FDEL]

FILE TOO BIG New file call

Attempt made to increase size of
segment directory beyond size limit.
(SGDR$$) [E$FLITB]

****FN <n> R-mode function

Device error in BACKSPACE command on
FORTRAN logical unit n.

**** F$BN - BAD LOGICAL UNIT V-mode function

REV. 0 A - 18

PDR3057 ERROR MESSAGES

FORTRAN l o g i c a l u n i t number ou t of
r a n g e .

**** F$FLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made t o d i v i d e by zero

**** F$FLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a d o u b l e - p r e c i s i o n number
had exceeded maximum.

**** p$FLEX - REAL => INTEGER CONVERSION ERROR 64V mode

Magnitude of r e a l number too g r e a t for
i n t e g e r convers ion .

**** F$FLEX - SINGLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to d i v i d e by
z e r o .

**** F$pLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a s i n g l e - p r e c i s i o n number
has exceeded maximum.

**** F$IO - FORMAT ERROR V-mode funct ion

I n c o r r e c t FORMAT s t a t emen t ; FORMAT
s t a t emen t s a r e no t comple te ly checked
a t compile t i m e .

**** F$IO - FORMAT/DATA MISMATCH V-mode funct ion

Input d a t a does no t correspond to
FORMAT s t a t emen t .

**** F$IO - NULL READ UNIT V-mode func t ion

FORTRAN l o g i c a l u n i t for READ s t a t emen t
no t configured p r o p e r l y .

- 19 November 1977

APPENDIX A PDR3057

****U R-mode function

Exponentiation exceeds integer size.
(E$ll)

ILLEGAL INSTRUCTION AT <octal-location> R mode and 64V mode

An instruction at <octal-location>
cannot be identified by the computer.

ILLEGAL NAME New file call

Illegal name specified for a file or
UFD (CREA$$, SRCH$$) [E$BNAM]

ILL REMOTE REF New file call

Attempt to perform network operations
by user not on network. [E$IREM]

ILLEGAL SEGNO 64V mode

Program referenced a non-existent
segment or a segment number greater
than those available to the user.

****IM R-mode function

Overflow or underflow occurred during a
multiply. (Mll, Ell)

<filename> IN USE Old file call

Attempt made to open a file already
opened, or close/delete a file opened
by another user, etc. [SI]

INVALID FAM FUNCTION CODE New file call

System error. [E$FIFC]

**** J**! _ ARGUMENT ERROR V-mode function

Exponentiation exceeds integer size.

REV. 0 A - 20

PDR3057 ERROR MESSAGES

****LG R-mode function

Argument not greater than zero in AIDG
or ALOG10 function.

MAX REMOTE USERS EXCEEDED New file call

No more users may access the network.
[E$TMRU]

NAME TOO LONG New file call

Length of name in argument list exceeds
32 characters. [E$NMLG]

NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none
available. User should log out to
release assigned segments and try again
later.

NO RIGHT New file call

User does not have access right to
file, or write access in a UFD to
create a sub-UFD. (CREA$$, GPAS$$,
SATR$$, SRCH$$, SGDR$$) [E$NRIT]

NO TIME New file call

Clock not started; system error.
[E$NTIM]

NO UFD ATTACHED Old file call

User not attached to a UFD [AL, SL].
Usually after attempt to attach with a
bad password.

NO UFD ATTACHED New file call

User not attached to a UFD. (ATCH$$,
CREA$$, GPAS$$, SATR$$, SRCH$$).
[E$NATT] Usually after attempt to
attach with a bad password.

- 21 November 1977

APPENDIX A PDR3057

NO VECTOR R and 64V mode

User error in program has caused PRIMOS
to attempt to access an unloaded
element.

1. A UII, PSU, or FLEX to location 0
2. Trap to location 0
3. SVC switch on, SVC trap and

location '65 is 0.

NOT A SEGDIR New file call

Attempt to perform segment director
operations on a file which is not a
segment directory. (SRCH$$) [E$NTSD]

NOT A UFD Old file call

Attempt to perform UFD operations on a
file which is not a UFD. [AR]

NOT A UFD New file call

Attempt to perform UFD operations on a
file which is not a UFD. (ATCH$$,
GPAS$$, SRCH$$). [E$NTUD]

<device-name> NOT ASSIGNED PRIMOS

User program has attempted to access an
I/O device which has not been assigned
to the user by a PRIMOS command.

<filename> NOT FOUND Old file call

File specified in subroutine call not
found. [AH, SH]

<filename> NOT FOUND New file call

File specified in subroutine call not
found. (ATCH$$, GPAS$$, SATR$$,
SRCH$$) [E$FNTF]

REV. 0 - 22

PDR3057 ERROR MESSAGES

<filename> NOT FOUND IN SEGDIR New file call

OLD PARTITION

Filename specified in subroutine call
not found in specified segment
directory. (SRCH$$, SGDR$$) [E$FNTS]

New file call

Attempt to perform, in an old file
partition, an operation possible only
in a new file partition; e.g.,
date/time information access. (SATR$$)
[E$OLDP]

****PA<n> R-mode function

PAUSE statement n (octal) encountered during
program execution.

**** PAUSE<n> V-mode function

PAUSE statement n (octal) encountered
during program execution.

POINTER FAULT 64V mode

Reference has been made to an argument
or instruction not in memory. The two
usual causes of this are an incomplete
load (unsatisfied references) , or
incomplete argument list in a
subroutine or function call.

POINTER MISMATCH PRIMOS

internal file pointers have become
corrupted; no user remedial action
possible. System manager must correct
[PC, DC, AC]

PROGRAM HALT AT <octal-location> R mode and 64V mode

vfkc
t-o^r^ cx

Program control has been l o s t . The
program has probably wri t ten over
i t s e l f or the load was incomplete
(R-mode) .

."Hem+fleJ \fs> ̂ eoJi io('4fv CK bo^k <-*-"-< < A con
o i/es-wo»-) T~IV*\ t'f^df^^a.rnxu o^JT <ST hookas).

J ^ r i rk'.S "«>-*i **• Ccursed

- 23 November 1977

APPENDIX A PDR3057

PRWFIL BOF Old file call

Attempt by PRWFIL subroutine to access
location before beginning of file.
[PG]

PRWFIL EOF Old file call

Attempt by PRWFIL subroutine to access
location after end of file. [PE]

PRWFIL POINTER MISMATCH Old file call

The internal file pointers in the
PRWFIL subroutine have become
corrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to
perform operations using a PRIMOS file
unit number on which no file is open.

PTR MISMATCH New file call

Internal file pointers have become
corrupted. No user remedial action
possible. (ATCH$$, CREA$$r GPAS$$,
PRWF$$, RDEN$$, SATR$$, SRCH$$,
SGDR$$). [E$PTRM]. Consult system
manager.

REMOTE LINE DOWN New file call

Remote call-in access to computer not
enabled. [E$RLDN]

****RI R-mode function

Argument is too large for
real-to-integer conversion. (C$12)

****RN<n> R-mode functon

Device error or end-of-file in READ
statement on FORTRAN logical unit n.

REV. 0 A - 24

PDR3057 ERROR MESSAGES

****SE R-mode funciton

Single precision exponent overflow.

SEG-DIR ER Old f i l e c a l l

Error encountered in segment d i rec tory
operat ion. [SQ]

SEGDIR UNIT NOT OPEN New f i l e c a l l

Attempt has been made to reference a
segment d i rec tory which i s not open.
(SRCH$$) [E$SUNO]

SEM OVERFLOW New f i l e c a l l

System e r ro r . [E$SEMO]

**** SIN/COS - ARGUMENT TOO LARGE V-mode function

Argument too large for SIN or COS
function.

****SQ R-mode function

Negative argument in SORT or DSQRT
functon.

**** SORT - ARGUMENTS V-mode functon

Negative argument in SORT function.

****ST<n> R-mode function

STOP statement n (octal) encountered
during program execution.

**** STOP<n> V-mode function

STOP statement n (octal) encountered
during program execution.

A - 25 November 1977

APPENDIX A PDR3057

****gZ R-mode function

Attempt to divide by zero
(single-precision).

TOO MANY UFD LEVELS New file call

UFD FULL

UFD FULL

Attempt to create more than 72 levels
of sub-UFDs. This error occurs only on
old file partitions; new file
partitions have no limit on UFD levels.
[E$TMUL]

Old file call

No more room in UFD. [SK]

New file call

UFD has no room for more files and/or
sub-UFD's. Occurs only in old file
partitions. (CREA$$, SRCH$$)L [E$FDFL]

UFD OVERFLOW Old file call

No more room in UFD.

UNIT IN USE Old file call

Attempt to open file on PRIMOS file
unit already in use [SI].

UNIT IN USE New file call

UNIT NOT OPEN

Attempt to open file on PRIMOS file
unit already in use. (SRCH$$).
[E$UIUS]

Old file call

Attempt to perform operations with a
file unit number on which no file has
been opened. [PD, SD]

UNIT NOT OPEN New file call

REV. 0 - 26

PDR3057 ERROR MESSAGES

Attempt to perform o p e r a t i o n s wi th a
f i l e u n i t number on which no f i l e has
been opened. (PRWF$$, RDEN$$, SRCH$$,
SGDR$$). [E$UNOP]

UNIT OPEN ON DELETE Old f i l e c a l l

Attempt t o d e l e t e f i l e wi thout having
f i r s t c losed i t . [SD]

****WN<n> R-mode funct ion

Device e r r o r or e n d - o f - f i l e in WRITE
s ta t ement on FORTRAN l o g i c a l u n i t n .

****XX R-mode funct ion

In teger argument >32767.

A - 27 November 1977

PDR3057 DEFAULTS AND CONSTANTS

APPENDIX B

SYSTEM DEFAULTS AND CONSTANTS

EDITOR (ED)
INPUT (TTY)
LINESZ 144
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPROMPT
MODE PRALL
VERIFY

Symbols
BLANK #
CPROMPT $
DPROMPT &
ERASE
ESCAPE t
KILL ?
SEMICO ; end of line or command
TAB \
WILD I

LINKING-LOADER (LOAD o r HILOAD)
Memory Loca t ion :

LOAD '60000- '63777
HILOAD * 174000-'177777

Loading address: current *PBRK value
Library: FTNLIB Fortran library
MODE D32R
Sector Zero Base Area:
Base start at location '200
Base range '600 words

SEGMENTED-LOADER (SEG)
Loading address: current TOP+1 in

current procedure segment
Stack size: '6000 words
Library: PFTNLB and IFTNLB libraries

EXECUTION
A-register value 0
B-register value 0
X-register value 0
Program start address '1000
Bits 4-6 of Keys:
000 16K, sector-address
001 32K, sector-address
010 64K, relative-address
011 32K, relative-address
110 64K, segmented-address

B - 1 November 1977

APPENDIX B PDR3057

PRIMOS
ERASE
INTERRUPT CTRL/P or BREAK
KILL ?
Files:
created with protection

owner all access rights ('7)
non-owner no access rights (*0)

FORTRAN COMPILER (FTN)
BINARY disk-file
ERRTTY
FP
INPUT disk-file
INTS
LISTING NO no listing file
NOBIG
NODCLVAR
NOTRACE
NOXREF
SAVE
32R

REV. 0 B - 2

PDR3057 ASCII CHARACTER SET

APPENDIX C

ASCII CHARACTER SET

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage.

• Output Parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software will
compute transmitted parity. Seme controllers (e.g., MLC) may
have hardware to assist in parity generations.

• Input Parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit
the host software requirements. Some controllers (e.g., MLC)
may assist in parity error detection.

• The Prime internal standard for the parity bit is one, i.e.,
'200 is added to the octal value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape
character ~ and the octal value. The character is interpreted by output
devices according to their hardware.

Example: Typing ~207 will enter one character into the text.

CTRL-P (!5e0)
.CR. C215)

C242)
? ('277)
\ C334)

is interpreted as a .BREAK.
is interpreted as a newline (.NL.)
is interpreted as a character erase
is interpreted as a line kill
is interpreted as a logical tab (Editor)

November 1977

APPENDIX C PDR3057

Table C-l

Octal ASCII
Value Character

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

NULL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM''
SOB
ESC
FS
GS
RS
US

ASCII Character Set (Non-Printing)

Comments/Prime Usage

Null character - filler
Start of header (caimunications)
Start of text (camiunications)
End of text (communications)
End of transmission (communications)
End of I.D. (communications)
Acknowledge affirmative (communications)
Audible alarm (bell)
Back space one position (carriage control)
Physical horizontal tab
Line feed; ignored as terminal input
Physical vertical tab (carriage control)
Form feed (carriage control)
Carriage return (carriage control) (1)
RRS
BRS
RCP
RHT
HLF
RVT
HLR

CkdtaeTerS
IUjy board

red ribbon shift
black ribbon shift
relative copy (2)
relative horizontal tab (3)
half line feed forward (carriage control)
relative vertical tab (4)
half line feed reverse (carriage control)

Negative acknowledgement (communicatibns)
Synchronicity (communications)
End of transmission block (communications)
Cancel
End of Medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Notes

-@
"A
~B

"D
-E
"F
~G
"H
"I
"J
~K
^

*N

T)
-p
~Q
*R
"S
*T
*V

*w
"X
"Y

1. Interpreted as .NL. at the terminal.

2. .BREAK, at terminal. Relative copy in file; next byte specifies
number of bytes to copy from corresponding position of preceeding
line.

3. Nekt byte specifies number of spaces to insert.

REV. 0

PDR3057 ASCII CHARACTER SET

4. Next byte specifies number of line feeds to insert.

Conforms to ANSI X3.4-1968

The parity bit ('200) has been added for Prime-usage.

Non-printing characters (~c) can be entered at most terminals by typing
the (control) key and the c character key simultaneously.

C - 3 November 1977

APPENDIX C PDR3057

Table 0 2

ASCII Character Set (Printing)

Octal
Value

240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

ASCII
Character

.SP. (1)
i
H

$
%

&
t

(

)
*

+
/
-

•

/
0
1
2
3
4
5
6
7
8
9
:

/
<

=
>

•p

(2)
(3)

(4)

(5)

(6)

Octal
Value

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

ASCII
Character

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
VJ
X
Y
Z
[
\
]
"(7)
_ (8)

Notes

Octal
Value

340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

ASCII
Character

* (9)
a
b
c
d
e
f
g
h
i
J
k
1
m
n
o
P
q
r
s
t
u
V

w
X

Y
z
{

}
% (10)
DEL (11)

1. Space forward one position

2. Terminal usage - erase previous character

3. £ in British use

4. Apostrophe/single quote

5. Comma

6. Terminal usage - kill line

REV. 0 C - 4

PDR3057 ASCII CHARACTER SET

7. 1963 standard t; terminal use - logical escape

8. 1963 standard «-

9. Grave

10. 1963 standard ESC

11. Rubout - ignored

Conforms to ANSI X3.4-1968
1963 variances are noted

The parity bit (r200) has been added for Prime usage.

C - 5 November 1977

INDEX

(SEG PROMPT) 6-6

$ (LOADER PROMPT) 5-4

$ (SEG'S LOADER PROMPT) 6-6

fe (SEG'S MODIFICATION SUB-PROCESSOR
PROMPT) 6-6

SINSERT (FORTRAN STATEMENT) 16-11

32R (COMPILER PARAMETER) 4 -14 , 18-7

32R MODE MEMORY IMAGES 7-1

64R (COMPILER PARAMETER) 4 -14 , 18-7

64R MODE MEMORY IMAGES 7-1

64V (COMPILER PARAMETER) 4 -14 , 18-8

64V MODE RUNFILES 7-2

A-REGISTER DEFAULT 18-8

A-REGISTER SETTING 4 - 3 , 18-8

A/SYMBOL (SEG LOADER SUBCOMMAND) 12-6

ACCESS RIGHTS 12-15

ACCESSING PRIMOS 2-1

ACCESSING SEG FROM SEG'S LOADER 12-10

ACCESSING SEG'S LOADER 6-7

ADDIS (MIDAC SUBROUTINE) 13-6

ADDING TO A RUNFILE 11-7

ADDRESS CONSTANT 15-7

ADDRESS SPACE, USER, CLEARING 5-2

ADDRESS, RELATIVE 4-14

ADDRESS, SEGMENTED 4-14

ADDRESS, START 7-2

ADDRESSING MODE 5-19

ADVANCED FUNCTIONALITY - SEG'S LOAD FAMILY
12-7

ADVANCED SEGMENTED PROGRAM TECHNIQUES
12-1

ADVANTAGES OF MIDAS 13-1

ALLOCATION OF STORAGE, DYNAMIC 4-15

ALLOCATION OF STORAGE, STATIC 4-15

APPLICABILITY OF SHARED PROCEDURE 12-1

APPLICATIONS LIBRARY 20-22

AREA TRACE 16-10

ARITHMETIC IF 16-15

ARITHMETIC OPERATOR 15-8

ARRAY 15-6

ARRAY, DUMMY 18-1

ASCII CHARACTER SET C-l

CHARACTERS, NON-PRINTING C-2

CHARACTERS, PRINTING C-4

CONSTANT 15-5

KEYBOARD INPUT C-l

PARITY BIT C-l

ASSEMBLER, PRIME MACRO SEE PMA
PROGRAMMER'S GUIDE

ASSIGN (FORTRAN STATEMENT) 16-12

ASSIGN (PRIMOS COMMAND) 3-1

ASSIGNED GO TO 16-15

ASSIGNING A DEVICE 3-1

ASSIGNMENT STATEMENTS 16-11

ASSIGNMENT, RELATIVE 11-10

ASSUMPTIONS ABOUT PROGRAMMER 1-1

ATTACH (LOADER COMMAND) 5-20

ATTACH (SEG LOADER SUBCOMMAND) 11-8

ATTACHING TO OTHER UFDS 11-8

AUTOMATIC (LOADER COMMAND) 5-17

B-FORMAT 16-26

B-REGISTER DEFAULT 18-8

B-REGISTER SETTING 4 - 3 , 18-8

BACKSPACE (FORTRAN STATEMENT) 16-30

BASE AREA 5 - 1 , 5-17

BASE AREA SECTION - SEG LOADMAP 11-5

BASE AREAS, LOADER 4-15

BASE INFORMATION, EXPUNGING 12-10

BASIC CONCEPTS 1-6

BASIC SEG LOAD SESSION 6-2

BIG (COMPILER PARAMETER) 4-15, 18-1

BILD$R (MIDAS SUBROUTINE) 13-6

BINARY (COMPILER PARAMETER) 4-6, 18-1

BINARY (PRIMOS COMMAND) 18-14

BINARY FILE 4-6

BINARY FILE (DEFINITION) 1-7

BINARY READ 16-16

BINARY SEARCH SUBROUTINE 20-20

BINARY WRITE 16-20

INDEX

BIT/DEVICE CORRESPONDENCES (COMPILER)
18-11

BIT/MNEMONIC CORRESPONDENCES (COMPILER)
18-10

BIANK COMMON 16-7

BLOCK DATA (FORTRAN STATEMENT) 16-4

BREAK KEY 3-1

BYTE 1-8

CALL (FORTRAN STATEMENT) 16-9

CANCELLING LINE PRINTER LISTING 3-14

CARD IMAGES 3-2

CARD READER 3-2

CARDR (PR1MOS COMMAND) 3-3

CARDS, PUNCHED, READING 3-2

CATEGORIES, COMMAND, LOADER 5-7

CHANGING STACK LOCATION 11-17 , 12-20

CHANGING STACK SIZE 11 -9 , 11-17 , 12-20

CHARACTER STRING 15-5

CHARACTERISTICS OF THE SORTS 20-18

CHARACTERS, RESTRICTED 20-39

CIRCULAR ARGUMENT SEE PROOF BY
ASSUMPTION

CLEARING THE USER ADDRESS SPACE 5-2

CLOSE (PRIMOS COMMAND) 18-14

CMDNC0 SEE COMMAND UFD

CNAME (PRIMOS COMMAND) 3-14

COBOL, INTERFACE TO 13-10

CODE, MOVING LINES OF 3-7

CODE, OBJECT 4-2

CODE, PMA 4-9

CODE, SHARED 12-1

CODES, ERROR, SUBROUTINE 20-39

CODING STATEMENTS 16-20

COLUMN 6 USAGE 15-3

COMBINATION SUBROUTINE 20-10

COMBINATIONS, PARAMETER, COMPILER,
PROHIBITED 4-16

COMMAND CATEGORIES, LOADER 5-7

COMMAND FILE CMDSEG 7-7

COMMAND FILES 5 - 5 , 6-6

COMMAND FORMATS 5-5

COMMAND MODIFIERS 11-12

COMMAND REFERENCE, SEG 19-1

COMMAND SUMMARY, EDITOR 3-9

COMMAND UFD INSTALLATION - R MODE 7-5

COMMAND UFD INSTALLATION - V MODE 7-6

COMMAND UFD, PROGRAM INSTALLATION 7-1,
7-5

COMMANDS, LOADER (LIST) 5-6

COMMANDS, LOADER, FREQUENTLY USED 5-8

COMMANDS, LOADER, LESS FREQUENTLY USED
5-17

COMMANDS, SEG (COMPLETE LIST) 19-2

COMMANDS, SEG (LIST) 6-3

COMMANDS, SEG, ESSENTIAL 6-7

COMMANDS, SEG, FREQUENTLY USED 6-7

COMMANDS, SYSTEMS LEVEL, LOADER 5-21

COMMANDS, VESTIGIAL, SEG 6-5

COMMENTS 15-3

COMMENTS, IN-LINE 15-3

COMMENTS, OVERLAYING 3-7

COMMON 4-11

COMMON (FORTRAN STATEMENT) 16-7

COMMON (LOADER COMMAND) 5-18

COMMON ABS (SEG LOADER SUBCOMMAND) 12-7

COMMON BLOCK 6-2

COMMON BLOCK SECTION - SEG LOADMAP 11-6

COMMON BLOCKS OVER 64K WORDS LONG
1 1 - 1 1 , 12-16

COMMON LOCATION 5-19

COMMON REL (SEG LOADER SUBCOMMAND)
11-11

COMMON SORT PARAMETERS 20-18

COMMON, INITIALIZED 5-4

COMMON, LOADING 12-7

COMMON, MOVING 1 1 - 1 1 , 12-7

COMMON, SPANNING SEGMENT BOUNDARIES
4-15

COMOUTPUT (PRIMOS COMMAND) 16-11

COMPILATION CONTROL STATEMENTS 16-10

COMPILATION, MESSAGE, END OF 4-2

COMPILER DEFAULTS 4-4

INDEX

COMPILER
18-11

COMPILER

COMPILER

COMPILER

COMPILER
18-10

COMPILER

COMPILER

COMPILER

DEVICE/BIT CORRESPONDENCES

ERROR MESSAGES 4 - 3 , A-2

FILE SPECIFICATIONS 18-2

FUNCTIONS 4-4

MNEMONIC/BIT CORRESPONDENCES

MNEMONICS 4 - 1

MODES 4-14

PARAMETER 32R

64R

64V

BIG

COMPILER, USING THE

COMPILING 4-1

4-1

COMPILER

COMPILER

4-14, 18-7

4-14, 18-7

4-14, 18-8

4-15, 18-1

BINARY 4-6, 18-1

DCLVAR 4-15, 18-1

DEBASE 4-15, 18-3

DYNM 4-15, 18-3

ERRLIST 4-6, 18-3

ERRTTY 4-8, 18-3

EXPLIST 4-8, 18-3

FP 4-15, 18-4

INPUT 4-6, 18-4

INTL 4-16, 18-4

INTS 4-16, 18-5

LIST 4-8, 18-5

LISTING 4-6, 18-5

NOBIG 4-15, 18-5

NODCLVAR 4-15, 18-6

NOERRTTY 4-8, 18-6

NOFP 4-15, 18-6

NOTRACE 4-12, 18-6

NOXREF 4-11, 16-6

SAVE 4-15, 18-6

SOURCE 4-6, 18-6

SPO 4-16, 18-6

TRACE 4-12, 18-7

XREFL 4-11, 18-7

XREFS 4-11, 18-7

PARAMETERS 4-3, 18-1

REFERENCE 18-1

COMPILING FOR EXTENSION STACK SEGMENTS
12-19

COMPILING FOR OVER 64K WORD COMMON
12-16

COMPILING FOR SHARED PROCEDURE 12-3

COMPLEX (FORTRAN STATEMENT) 16-6

COMPLEX NUMBER 15-5

COMPUTED GO TO 16-15

CONCORDANCE
REFERENCE)

16-7 (SEE ALSO CROSS

CONSTANT, ADDRESS 15-7

CONSTANT, ASCII 15-5

CONSTANT, HOLLERITH 15-6

CONSTANT, LOGICAL 15-5

CONSTANTS 15-3

CONSTANTS, SYSTEM B-l

CONTENTS OF SEG LOADMAP 11-2

CONTINUATIONS 15-3

CONTINUE tFORTRAN STATEMENT) 16-12

CONTROL LINES 15-3

CONTROL STATEMENTS 16-12

CONVENTIONS 1-5

CONVENTIONS, FILENAME 1-6

CONVENTIONS, TYPOGRAPHIC 1-5

COPY RUNFILE 11-17

CREATE TEMPLATE 11-17

CREATK (MIDAS UTILITY) 13-2

CRMPC (PRIMOS COMMAND) 3-2

CROSS REFERENCE, FULL 4-11

CROSS REFERENCE, PARTIAL 4-11

CROSS REFERENCES, ENABLE 4-7

CTRL/P 3-1

D/ (SEG LOADER SUBCOMMAND) 11-13

DATA (FORTRAN STATEMENT) 16-9

DATA SUB-FILE, MIDAS 13-4

DATABASE MANAGEMENT SYSTEM 13-9

DATE SUBROUTINES 20-22

DCLVAR (COMPILER PARAMETER) 4 - 1 5 , 18-1

INDEX

DEBASE (COMPILER PARAMETER) 4-15, 18-3

DEBUGGING 8-1

DECODE (FORTRAN STATEMENT) 16-20

DECODE, FORMATTED 16-20

DECODE, LIST-DIRECTED 16-20

DEFAULT, A-REGISTER 18-8

DEFAULT, B-REGISTER 18-8

DEFAULT, STACK 11-17

DEFAULTS, COMPILER 4-4

DEFAULTS, SYSTEM B-l

DEFERRED LINE PRINTER LISTING 3-13

DEFINED SYMBOLS, EXPUNGING 12-10

DEFINING A SYMBOL 11-14 , 11-15 , 12-6

DEFINITIONS 1-5

DELETS (MIDAS SUBROUTINE) 13-6

DELETE (PRIMOS COMMAND) 3 -14 , 6 - 1 , 6-10

DELETE »SEG COMMAND) 6-9

DELETING FILES 3-14

DELETING MIDAS FILE 13-7

DELIMITERS, FORMAT 16-21

DESECTORIZATION 5-1

DEVICE CONTROL STATEMENTS 16-30

DEVICE IN USE (ERROR MESSAGE) 3-1

DEVICE, ASSIGNING A 3-1

DEVTCE/BIT CORRESPONDENCES (COMPILER)
18-11

DEVICES, PERIPHERAL 4-4

DEVICES, SPECIFY INPUT/OUTPUT 4-6

DIMENSION (FORTRAN STATEMENT) 16-8

DIRECT ENTRY SECTION - SEG LOADMAP 11-6

DITTO MODIFIER 11-13

DO (FORTRAN STATEMENT) 16-12

DO LOOP INDEX 16-14

DO LOOP, ONE-TRIP 16-14

DOCUMENTS, RELATED 1-4

DOUBLE PRECISION (FORTRAN STATEMENT)
16-6

DOUBLE-PRECISION NUMBER 15-5

DUMMY ARGUMENT ARRAYS - OVER 64K WORD
COMMON 12-16, 18-1

DYNAMIC ALLOCATION OF STORAGE 4-15

DYNM (COMPILER PARAMETER) 4-15, 18-3

ED (PRIMOS COMMAND) 3-5

EDIT MODE 3-5

EDITOR COMMAND SUMMARY 3-9

EDITOR SPECIAL CHARACTERS 3-6

EDITOR, SHARED 12-1

EDITOR, THE 3-5

EDITOR, USING THE 3-5

ENABLE LISTINGS/CROSS REFERENCES 4-7

ENCODE (FORTRAN STATEMENT) 16-20

END (FORTRAN STATEMENT) 16-14

END OF COMPILATION MESSAGE 4-2

ENDFILE (FORTRAN STATEMENT) 16-30

ENTERING AND MANIPUIATING SOURCE PROGRAMS
3-1

ENTERING AND MODIFYING PROGRAMS - THE
EDITOR 3-5

ENTRY FROM CITHER MEDIA 3-1

ENTRY POINTS, MULTIPLE 11-18

EQUIVALENCE (FORTRAN STATEMENT) 16-8

ERRLIST (COMPILER PARAMETER) 4-8, 18-3

ERROR CODES, SUBROUTINE 20-39

ERROR HANDLING 20-39

ERROR MESSAGE, DEVICE IN USE 3-1

ERROR MESSAGES 4-8, A-l

, COMPILER 4-3, A-2

, LINKING LOADER 5-15 , A-5

, LOADER 5-5

, RUN-TIME 7 - 3 , A - l l

, SEG 6-6

, SEG LOADER A-8

ERRPRS SUBROUTINE 20-39

ERRTTY (COMPILER PARAMETER) 4-8, 18-3

ESSENTIAL SEG COMMANDS 6-7

ESTABLISHED RUNFILE 6-3

EXAMPLE OF LOAD USING SEG 6-10

EXECUTE (LOADER COMMAND) 5-14

EXECUTE (SEG LOADER SUBCOMMAND) 6-9

INDEX

EXECUTING PROGRAMS 7-1

EXECUTING RUNFILES AT SEG LEVEL 11-20

EXIT SUBROUTINE 1-9

EXPLIST (COMPILER PARAMETER) 4 - 8 , 18-3

EXPUNGING BASE INFORMATION 12-10

EXPUNGING DEFINED SYMBOLS 12-10

EXTENDED FEATURES OF SEG 11-1

EXTENDED SEG LOADER FUNCTIONAUTY 11-7

EXTENSION STACK SEGMENTS 12-19

EXTENSION STACKS - SPLIT SEGMENTS 12-5

EXTENT SECTION - SEG LOADMAP 11-4

EXTERNAL (FORTRAN STATEMENT) 16-9

EXTERNAL LOGIN PROGRAM 12-12

EXTERNAL PROCEDURE STATEMENTS 16-9

F / (LOADER COMMAND) 5-17

F / (SEG LOADER SUBCOMMAND) 12-9

F / S / (SEG LOADER SUBCOMMAND) 12-9

FILE (DEFINITION) 1-6

FILE MANIPULATION SUBROUTINES 20-22

FILE MODIFICATION 11-20

FILE SPECIFICATIONS, COMPILER 18-2

FILE SYSTEM FEATURES 10-1

FILE SYSTEM SUMMARY 1-12

FILE UNIT USAGE (COMPILER) 18-13

FILE, BINARY 4-6

FILE, LISTING 4-6

FILE, OBJECT 4-6, 6-2

FILENAME CONVENTIONS 1-6

FILENAMES 20-39

FILENAMES IN SEG 6-6

FILENAMES, LONG, IN THE LOADER 5-6

FILES, COMMAND 5 - 5 , 6-6

FILES, SAVING, EDITOR 3-6

FILMEM (PRIMOS COMMAND) 5-2

FIND$ IMIDAS SUBROUTINE) 13-7

FINDING A LINE BY STATEMENT NUMBER 3-7

FLAGGING UNDECLARED VARIABLE 4 - 1 5 , 18-1

FLOATING-POINT HARDWARE 5-19

FLOATING-POINT SKIP 4-15

FORCELOAD (LOADER COMMAND) 5-17

FORCELOADING 5-17 , 12-9

FORCELOADING TO A SPECIFIED SEGMENT
12-9

FORMAT (FORTRAN STATEMENT) 16-21

AS A VARIABLE 16-26

DELIMITERS 16-21

FIELD DESCRIPTOR 16-21

IN INPUT STATEMENTS 16-24

IN OUTPUT STATEMENTS 16-22

REPETITION 16-21

SCALE FACTORS 16-28

FORMATS, COMMAND 5-5

FORMATTED DECODE 16-20

FORMATTED PRINTER CONTROL 16-28

FORMATTED READ 16-16

FORMATTED WRITE 16-19

FORMS MANAGEMENT SYSTEM 13-9

FORTRAN CHARACTER SET 15-1

FEATURE SUMMARY 1-8

FUNCTION LIBRARY 20-1

FUNCTION STRUCTURE 17-1

FUNCTIONS (LIST) 20^2

LANGUAGE ELEMENTS 15-1

LIBRARY, IMPURE 12-7

LIBRARY, PURE 12-7

LINE FORMAT 15-1

MATRIX (MATH) LIBRARY 20-10

PRIMERS 1-1

FORTRAN STATEMENT SINSERT 16-11

ASSIGN 16-12

BACKSPACE 16-30

BLOCK DATA 16-4

CALL 16-9

COMMON 16-7

COMPLEX 16-6

CONTINUE 16-12

DATA 16-9

DECODE 16-20

INDEX

FORTRAN STATEMENT DIMENSION 16-8

DO 16-12

DOUBLE PRECISION 16-6

ENCODE 16-20

END 16-14

ENDFILE 16-30

EQUIVALENCE 16-8

EXTERNAL 16-9

FORMAT 16-21

FULL LIST 16-10

FUNCTION 16-4

GO TO 16-14

IF 16-15

IMPLICIT 16-5

INTEGER 16-6

INTEGEP*2 16-6

rNTEGER*4 16-6

LIST 16-10

LOGICAL 16-6

NO LIST 16-10

PARAMETER 16-7

PAUSE 16-15

PRINT 16-16

READ 16-16

REAL 16-6

REAL*4 16-6

REAL*8 16-6

RETURN 16-15

REWIND 16-30

SAVE 16-8

STOP 16-16

SUBROUTINE 16-4

TRACE 16-10

WRITE 16-19

FORTRAN STATEMENTS 16-1

FORTRAN SUBROUTINE STRUCTURE 17-1

FORTRAN UNDER PRIMOS 1-8

FORTRAN UNIT NUMBERS 16-17

FP (COMPILER PARAMETER) 4-15, 18-4

FRAME, LINK 6-3, 11-5

PROCEDURE 11-5

STACK 11-5

FREQUENTLY USED LOADER COMMANDS 5-8

FREQUENTLY USED SEG COMMANDS 6-7

FTN (PRIMOS COMMAND) 4-1

FULL CROSS REFERENCE 4-11

FULL LIST (FORTRAN STATEMENT) 16-10

FUNCTION (FORTRAN STATEMENT) 16-4

FUNCTION CALLS (FORTRAN) 16-30

FUNCTION LIBRARY, FORTRAN 20-1

FUNCTION STRUCTURE, FORTRAN 17-1

FUNCTION SUBPROGRAMS, USER-DEFINED 17-1

FUNCTION, STATEMENT 17-2

FUNCTIONAL STRUCTURE OF SEG'S LOADER
6-2

FUNCTIONS 17-1

FUNCTIONS, COMPILER 4-4

FUNCTIONS, FORTRAN (LIST) 20-2

FUNCTIONS, LOGICAL 20-2

FUNCTIONS, TERMINAL 1-5

FUTIL (PRIMOS COMMAND) 6-1, 6-10

FUTIL COMMAND TREDEL 6-1, 6-10

GLOBAL MODE SPECIFICATION 16-6

GLOBAL TRACE 18-7

GO TO (FORTRAN STATEMENT) 16-14

ASSIGNED 16-15

COMPUTED 16-15

UNCONDITIONAL 16-14

GUIDE, ORGANIZATION OF 1-2

HARDWARE (LOADER COMMAND) 5-19

HEADER STATEMENTS 16-4

HELP (SEG COMMAND) 6-7

HIGH-SPEED ARITHMETIC 5-19

HILOAD (PRIMOS COMMAND) 5-4

HOLLERITH CONSTANT 15-6

HOUSEKEEPING, MIDAS FILE 13-7

I/O SUBROUTINES, TERMINAL 20-22

IDENTITY (DEFINITION) 1-8

INDEX

IF (FORTRAN STATEMENT) 16-15

ARITHMETIC 16-15

LOGICAL 16-15

IL (SEG LOADER SUBCOMMAND) 12-7

IMPLEMENTED STATEMENTS (LIST) 16-1

IMPLICIT (FORTRAN STATEMENT) 16-5

IMPURE FORTRAN LIBRARY 12-7

IN-LINE COMMENTS 15-3

INCLUDING R-MODE INTERLUDE IN SEG RUNFILE
12-12

INCORPORATING FILES INTO SHARED SEGMENTS
12-15

INITIALIZE (LOADER COMMAND) 5-20

INITIALIZE (SEG LOADER SUBCOMMAND) 11-8

INITIALIZED COMMON 5-4

INITIALIZING OVER 64K WORD COMMON 12-18

INITIALIZING SEG'S LOADER 11-8

INITIALIZING THE LINKING LOADER 5-20

INPUT (COMPILER PARAMETER) 4 - 6 , 18-4

INPUT DEVICES, SPECIFY 4-6

INPUT MODE 3-5

INPUT/OUTPUT SPECIFICATIONS 18-8

INPUT/OUTPUT STATEMENTS 16-16

INSERT SEE $INSERT

INSTALLATION IN COMMAND UFD 7-5

INTEGER 15-4

INTEGER »FORTRAN STATEMENT) 16-6

INTEGER DEFAULTS 15-4

INTEGER*2 4-16

INTEGER*2 (FORTRAN STATEMENT) 16-6

INTEGER*4 4-16

INTEGER*4 (FORTRAN STATEMENT) 16-6

INTEGER, LONG 4-16, 15-4, 18-4, 20-1

INTEGER, SHORT 4-16, 15-4, 18-5, 20-1

INTERACTIVE ENVIRONMENT 1-10

INTERFACE TO OTHER LANGUAGES 13-1

INTERFACE TO OTHER SYSTEMS 13-1

INTERLUDE PROGRAM 7-7

INTERLUDE PROGRAM RUNIT 12-2

INTL (COMPILER PARAMETER) 4-16, 18-4

INTS (COMPILER PARAMETER) 4-16, 18-5

ITEM TRACE 16-10

KBUILD (MIDAS UTILITY) 13-2, 13-4

KEYBOARD INPUT, ASCII C-l

KEYS, SUBROUTINE 20-39

KIDDEL (MIDAS UTILITY) 13-2, 13-7

LANGUAGE ELEMENTS, FORTRAN 15-1

LANGUAGES, OTHER, INTERFACE TO 13-1

LC (LOAD COMPLETE - LOADER) 5-4

LC (LOAD COMPLETE - SEG) 6-6

LEGAL CHARACTERS 15-1

LESS FREQUENTLY USED LOADER COMMANDS
5-17

LIBRARIES REFERENCE 20-1

LIBRARY (LOADER COMMAND) 5-10

LIBRARY (SEG LOADER SUBCOMMAND) 6-8,
11-12, 12-7

LIBRARY, APPLICATIONS 20-22

FORTRAN FUNCTION 20-1

MATH, FORTRAN 20-10

MATRIX, FORTRAN 20-10

OPERATING SYSTEM 20-39

SEARCH 20-18

SORT 20-18

LINE FORMAT, FORTRAN 15-1

LINE PRINTER LISTING 3-13

LINE PRINTER, CANCELLING LISTING 3-14

LINK FRAME 6-2, 11-5

LINKAGE AREA 5-18

LINKING LOADER ERROR MESSAGES A-5

LINKING, LOADING AND 5-1

LIST (COMPILER PARAMETER) 4-8, 18-5

LIST (FORTRAN STATEMENT) 16-10

LIST-DIRECTED DECODE 16-20

LIST-DIRECTED READ 16-18

LISTING (COMPILER PARAMETER) 4-6, 18-5

LISTING (PRIMOS COMMAND) 18-13

LISTING AT LINE PRINTER 3-13

LISTING AT TERMINAL 3-13

LISTING FILE 4-6

INDEX

LISTING PROGRAMS 3-13

LISTINGS, ENABLE 4-7

LOAD (LOADER COMMAND) 5-8

LOAD (PRIMOS COMMAND) 5-4

LOAD (SEG LOADER SUBCOMMAND) 6-8,
11-12, 12-7

LOAD COMMANBS, LOADER'S FAMILY (SEG)
6-9

LOAD FAMILY 11-12

LOAD MAP 5-1

LOAD OBJECT FILES (COMMANDS) 6-2

LOAD SESSION, SEG, BASIC 6-2

LOAD STATE PARAMETERS 5-9

LOAD, PARTIAL 6-2

LOADER BASE AREAS 4-15

LOADER COMMAND ATTACH 5-20

AUTOMATIC 5-17

COMMON 5-18

EXECUTE 5-14

F/ 5-17

FORCELOAD 5-17

HARDWARE 5-19

INITIALIZE 5-20

LIBRARY 5-10

LOAD 5-8

MAP 5-10

MODE 5-19

P/ 5-21

QUIT 5-14

SAVE 5-13

SETBASE 5-18

VIRTUALBASE 5-22

XPUNGE 5-22

LOADER COMMANDS (LIST) 5-6

LOADER COMMANDS, FREQUENTLY USED 5-8

LOADER COMMANDS, LESS FREQUENTLY USED
5-17

LOADER ERROR MESSAGES 5-5

LOADER ERROR MESSAGES (LIST) 5-15

LOADER INITIALIZATION 5-20

LOADER SUBCOMMANDS, SEG 6-8

LOADER'S COMMAND CATEGORIES 5-7

LOADER'S FAMILY OF LOAD COMMANDS (SEG)
6-9

LOADER, SEG'S 6-1

LOADER, USING THE 5-4

LOADER, VIRTUAL 6-1

LOADING AND LINKING 5-1

LOADING COMMON 12-7

LOADING FOR SHARED PROCEDURE 12-3

LOADING FROM OTHER UFDS 5-21

LOADING RUNIT 12-4

LOADING SEGMENTED PROGRAMS 6-1

LOADING SUBCOMMANDS 11-12

LOADING TO A SPECIFIED SEGMENT 12-7

LOADING TO PAGE BOUNDARIES 5-21

LOADMAP - BASE AREA SECTION (SEG) 11-5

- COMMON BLOCK SECTION (SEG)
11-6

- DIRECT ENTRY SECTION (SEG)

11-6

- EXTENT SECTION (SEG) 11-4

- PROCEDURE SYMBOL SECTION (SEG)
11-5

- SEGMENT ASSIGNMENT SECTION (SEG)
11-4

- UNDEFINED SYMBOLS SECTION (SEG)
11-6

CONTENTS, SEG 11-2

OPTIONS, SEG 11-1

ORDERING (SEG) 11-6

SEG 11-1

LOCAL STORAGE 4-15, 16-9

LOCATION OF COMMON 5-19

LOCATION OF STACK 6-9

LOCK$ (MIDAS SUBROUTINE) 13-7

LOGICAL (FORTRAN STATEMENT) 16-6

LOGICAL CONSTANT 15-5

LOGICAL DISK (DEFINITION) 1-7

LOGICAL FUNCTIONS 20-2

LOGICAL IF 16-15

LOGICAL OPERATOR 15-7

X

INDEX

LONG FILENAMES IN THE LOADER 5-6

LONG INTEGER 4-16, 15-4, 18-4, 20-1

MAGNET (PRIMOS COMMAND) 3-3

MAGNETIC 1APE, READING 3-3

MAP (LOADER COMMAND) 5-10

MAP (SEG COMMAND) 11-1

MAP (SEG LOADER SUBCOMMAND) 11-10

MAP 3 (SEG LOADER SUBCOMMAND) 6-9

MAP OPTIONS 5-10

MAP, LOAD 5-1

MAPS, WRITING TO A FILE 5-13

MASTER FILE DIRECTORY (DEFINITION) 1-6

MATH LIBRARY, FORTRAN 20-10

MATHEMATICAL FUNCTIONS 1-15

MATRIX LIBRARY, FORTRAN 20-10

OPERATIONS 1-16

OPERATIONS SUBROUTINES 20-10

MEDIA, ENTRY FROM OTHER 3-1

MEMORY USAGE 4-14

MESSAGE, END OF COMPILATION 4-2

MESSAGES, ERROR 4-8, A-l

ERROR, COMPILER 4-3, A-2

ERROR, LINKING LOADER
5-15, A-5

ERROR, LOADER 5-5

ERROR, RUN-TIME 7-3, A-ll

ERROR, SEG 6-6

ERROR, SEG LOADER A-8

SEG 6-6

MFD (DEFINITION) 1-6

MIDAS 13-1

DATA SUB-FILE 13-4

FILE DELETION 13-7

FILE HOUSEKEEPING 13-7

FILE MAINTENANCE 13-6

MIDAS SUBROUTINE ADD1$ 13-6

BILDSR 13-«

DELET$ 13-6

FIND$ 13-7

MIDAS SUBROUTINE LOCKS 13-7

NEXT$ 13-7

PRIBLD 13-6

SECBLD 13-6

UPDAT$ 13-7

MIDAS TEMPLATE 13-2

MIDAS UTILITY CREATK 13-2

KBUILD 13-2, 13-4

KIDDEL 13-2, 13-7

REMAKE 13-2, 13-7

REPAIR 13-2, 13-9

MIDAS, ADVANTAGES OF 13-1

MIDAS, REQUIREMENTS FOR 13-2

MIXED MODE ASSIGNMENT 16-11

MIXED MODE ASSIGNMENT RULES 16-13

MIXING LONG AND SHORT INTEGERS 20-1

MNEMONIC/BIT CORRESPONDENCES (COMPILER)
18-10

MNEMONICS, COMPILER 4-1

MODE (DEFINITION) 1-8

MODE (LOADER COMMAND) 5-19

MODE SPECIFICATION STATEMENTS 16-6

MODE, ADDRESSING 5-19

MODES, COMPILER 4-14

MODIFICATION SUB-PROCESSOR 11-17

MODIFIERS, COMMAND 11-12

MODIFY (SEG MCOMMAND) 11-17

MODIFYING A LINE WITHOUT CHANGING
CHARACTER POSITIONS 3-7

MOVING COMMON 11-11, 12-7

MOVING LINES OF CODE 3-7

MULTIPLE ENTRY POINTS 11-18

MULTIPLE INDEX DATA ACCESS SYSTEM SEE
MIDAS

NEW (SEG MODIFY SUBCOMMAND) 11-18

NEXT? (MIDAS SUBROUTINE) 13-7

NO LIST (FORTRAN STATEMENT) 16-10

NOBIG (COMPILER PARAMETER) 4-15, 18-5

NODCLVAR (COMPILER PARAMETER) 4-15,
18-6

NOERRTTY (COMPILER PARAMETER) 4-8, 18-6

INDEX

NOFP (COMPILER PARAMETER) 4-15, 18-6

NON-PRINTING ASCII CHARACTERS C-2

NOTRACE (COMPILER PARAMETER) 4-12, 18-6

NOXREF (COMPILER PARAMETER) 4-11, 18-6

NUMBER, COMPLEX 15-5

NUMBER, DOUBLE-PRECISION 15-5

NUMBER, REAL 15-5

NUMBERS, REFERENCE 11-11

NUMBERS, SEQUENCE . 15-3

OBJECT CODE 4-2

FILE 4-6, 6-2

FILE (DEFINITION) 1-7

OPERANDS 15-3

OPERATE ON CURRENT STATE OF LOAD 6-2

OPERATE ON CURRENT STATE OF SEG 6-2

OPERATING SYSTEM FEATURES 9-1

OPERATING SYSTEM LIBRARY 20-39

OPERATING SYSTEM SUBROUTINES 20-40

OPERATIONS 4-15

OPERATOR 15-7

OPERATOR PRIORITY 15-8

OPERATOR, ARITHMETIC 15-8

OPERATOR, LOGICAL 15-7

OPERATOR, RELATIONAL 15-8

OPR (PRIMOS COMMAND) 12-15

OPTIMIZATION AND OTHER HELPFUL HINTS
14-1

OPTIONS, MAP 5-10

OPTIONS, SEG LOAEMAP 11-1

OPTIONS, SPOOL 3-13

ORDERING IN SEG LOADMAP 11-6

ORGANIZATION OF GUIDE 1-2

OTHER LANGUAGES 13-10

OUTPUT DEVICES, SPECIFY 4-6

OVER 64K WORD COMMON 12-3, 12-16, 18-1

OVER 64K WORD COMMON - INITIALIZATION
12-18

OVER 64K WORD COMMON - RESTRICTIONS
12-18

OVERLAYING COMMENTS AFTER CODE IS WRITTEN
3-7

OVERRIDE LOADER DEFAULTS (COMMANDS) 6-2

P/ (LOADER COMMAND) 5-21

PAGE BOUNDARIES, LOADING TO 5-21

PAPER TAPE, PUNCHED, READING 3-5

PARAMETER 15-6

PARAMETER (FORTRAN STATEMENT) 16-7

PARAMETER COMBINATIONS, COMPILER, '
PROHIBITED 4-16

PARAMETERS, COMPILER 4-3, 18-1

PARAMETERS, LOAD STATE 5-9

PARAMETERS, SORT 20-18

PARITY BIT, ASCII C-l

PARTIAL CROSS REFERENCE 4-11

PARTIAL LOAD 6-2

PASSWORD IN SEG TREENAME 6-7

PASSWORDS 20-39

PAUSE (FORTRAN STATEMENT) 16-15

PERIPHERAL DEVICES 4-4

PERMUTATION SUBROUTINE 20-17

PETITIO PRINCIPII SEE CIRCULAR ARGUMENT

PHANTOM ENVIRONMENT 1-10

PL (SEG LOADER SUBCOMMAND) 12-7

PMA CODE 4-9

PMA, INTERFACE TO 13-10

PRIBLD (MIDAS SUBROUTINE) 13-6

PRIME MACRO ASSEMBLER SEE PMA

PRIMERS, FORTRAN 1-1

PRIMOS COMMAND (SUMMARY) 1-11

PRIMOS COMMAND ASSIGN 3-1

BINARY 18-14

CARDR 3-3

CLOSE 18-14

CNAME 3-14

COMOUTPUT 16-11

CRMPC 3-2

DELETE 3-14, 6-1, 6-10

ED 3-5

FILMEM 5-2

FTN 4-1

X - 10

INDEX

PRIMOS COMMAND FUTIL 6-1, 6-10

HILOAD 5-4

LISTING 18-13

LOAD 5-4

MAGNET 3-3

OPR 12-15

RESUME 7-1

SEG 6-6, 7-3

SHARE 12-15

SLIST 3-13

SPOOL 3-13

START 7-2

UNASSIGN 3-2

PRIMOS COMMANDS FOR COMPILING 18-13

PRIMOS ENVIRONMENTS 1-9

PRIMOS, ACCESSING 2-1

PRINT (FORTRAN STATEMENT) 16-16

PRINTER CONTROL, FORMATTED 16-28

PRINTING ASCII CHARACTERS C-4

PROCEDURE FRAMC 11-5

PROCEDURE SYMBOL SECTION - SEG LOADMAP
11-5

PROCEDURE, SHARED 12-1

PROGRAM COMPOSITION 15-9

PROGRAM CONVERSION 1-8

PROGRAM EXECUTION 7-1

PROGRAM MEMORY IMAGES SAVED BY LINKING
LOADER 7-1

PROGRAM SYMBOLS 4-11

PROGRAM, INTERLUDE 7-7

PROGRAMS, LISTING 3-13

PROGRAMS, SEGMENTED, LOADING 6-1

PROGRAMS, SOURCE, ENTERING AND
MANIPULATING 3-1

PROHIBITED PARAMETER COMBINATIONS 4-16

PROOF BY ASSUMPTION SEE PETITIO
PRINCIPII

PROTECTED FUNCTION 16-4

PROTECTED SUBROUTINE 16-5

PUBLIC SEGMENTS 12-1

PUNCHED CARDS, READING 3-2

PUNCHED PAPER TAPE, READING 3-5

PURE FORTRAN LIBRARY 12-7

QUIT (LOADER COMMAND) 5-14

QUIT (SEG COMMAND) 6-10

QUIT (SEG LOADER SUBCOMMAND) 6-9

R-IDENTITY 4-1

R-MODE RUNFILES 12-11

R/SYMBOL (SEG LOADER SUBCOMMAND) 11-15

RANDOM NUMBER SUBROUTINES 20-33

READ (FORTRAN STATEMENT) 16-16

READ, BINARY 16-16

READ, FORMATTED 16-16

READ, LIST-DIRECTED 16-18

READER, CARD 3-2

READING MAGNETIC TAPE 3-3

READING PUNCHED CARDS 3-2

READING PUNCHED PAPER TAPE 3-5

REAL (FORTRAN STATEMENT) 16-6

REAL NUMBER 15-5

REAL*4 (FORTRAN STATEMENT) 16-6

REAL*8 (FORTRAN STATEMENT) 16-6

RECURSIVE SUBROUTINES 4-15, 12-3, 16-9

REFERENCE NUMBERS 11-11

REFERENCE, COMPILER 18-1

REFERENCE, CROSS SEE CROSS REFERENCE

REFERENCES, UNSATISFIED 6-9, 11-6

RELATED DOCUMENTS 1-4

RELATIONAL OPERATOR 15-8

RELATIVE ADDRESS 4-15

RELATIVE ASSIGNMENT 11-10

RELATIVE SEGMENT ASSIGNMENT 11-10

RELOADING A MODULE 11-9

REMAKE (MIDAS UTILITY) 13-2, 13-7

RENAMING AND DELETING FILES 3-14

RENAMING FILES 3-14

REPAIR (MIDAS UTILITY) 13-2, 13-9

REPETITION, FORMAT 16-21

REPLACING A MODULE 11-7, 11-9

REQUIREMENTS FOR MIDAS 13-2

- 11

INDEX

REQUIREMENTS FOR USING SORTS 20-19

RESCANNING FORMAT LINES 16-26

RESERVING SPACE FOR A SYMBOL 11-15 ,
12-6

RESTRICTED CHARACTERS 20-39

RESTRICTIONS ON OVER 64K WORD COMMON
12-18

RESUME (PRIMOS COMMAND) 7-1

RESUME (SEG COMMAND) 11-20

RETURN (FORTRAN STATEMENT) 16-15

RETURN (SEG LOADER SUBCOMMAND) 12-10

RETURN (SEG MODIFY SUBCOMMAND) 11-19

REWIND (FORTRAN STATEMENT) 16-30

RL (SEG LOADER SUBCOMMAND) 11 -9 , 11-12,

12-7

RUN-TIME CONTROL STATEMENTS 16-10

RUN-TIME ERROR MESSAGES 7 - 3 , A - l l

RUNFILE (DEFINITION) 1-7

RUNFILE, ESTABLISHED 6-3

RUNFILES, SEGMENTED 6-1

RUNIT 12 -2 , 12-12

S / (SEG LOADER SUBCOMMAND) 12-7

S / F / SEE F / S /

SAMPLE EDITING SESSION 3-8

SAMPLE PROGRAM DEVELOPMENT 1-14

SAVE (COMPILER PARAMETER) 4 - 1 5 , 18-6

SAVE (FORTRAN STATEMENT) 16-8

SAVE (LOADER COMMAND) 5-13

SAVE (SEG LOADER SUBCOMMAND) 6-9

SAVING FILES 3-6

SCALE FACTORS 16-28

SEARCH LIBRARY 20-18

SEARCH SUBROUTINE 20-20

SECBLD (MIDAS SUBROUTINE) 13-6

SECTOR ZERO 5-18 , 1 1 - 5 , 18-3

SEG 6-1

SEG (PRIMOS COMMAND) 6 -6 , 7-3

SEG COMMAND (REFERENCE) 19-1

SEG COMMAND DELETE 6-9

HELP 6-7

SEG COMMAND MAP 11-1

MODIFY 11-17

QUIT 6-10

REFERENCE 19-1

RESUME 11-20

SHARE 12-11

SINGLE 12-11

TIME 11-20

VLOAD 6-7

VLOAD * 11-7

SEG COMMANDS (COMPLETE LIST) 19-2

(CONDENSED LIST) 6-3

ESSENTIAL 6-7

FREQUENTLY USED 6-7

SEG ERROR MESSAGES 6-6

SEG LEVEL RUNFILE EXECUTION 11-20

SEG LOAD SESSION 6-10

SEG LOAD SESSION, BASIC 6-2

SEG LOADER ERROR MESSAGES A-8

SEG LOADER LOADING SUBCOMMANDS 11-13

SEG LOADER SUBCOMMAND A/SYMBOL 12-6

ATTACH 11-8

COMMON ABS 12-7

COMMON REL 11-11

D/ 11-13

EXECUTE 6-9

?/ 12-9

F / S / 12-9

IL 12-7

INITIALIZE 11-8

LIBRARY 6 - 8 ,
11-12 , 12-7

LOAD 6 - 8 , 11 -12 ,
12-7

MAP 11-10

MAP 3 6-9

PL 12-7

QUIT 6-9

R/SYMBOL 11-15

RETURN 12-10

\

X - 12

INDEX

SEG LOADER SUBCOMMAND RL 1 1 - 9 , 1 1 - 1 2 ,
1 2 - 7

S / 1 2 - 7

SAVE 6 - 9

S P L I T 1 2 - 4

STACK 1 1 - 9

SYMBOL 1 1 - 1 4

XPUNGE 1 2 - 1 0

SEG LOADER SUBCOMMANDS 6 - 8

SEG LOADER, EXTENDED FUNCTIONALITY 1 1 - 7

SEG LOADMAP 1 1 - 1

SEG LOADMAP - BASE AREA SECTION 1 1 - 5

SEG LOADMAP - COMMON BLOCK SECTION 1 1 - 6

SEG LOADMAP - DIRECT ENTRY SECTION 1 1 - 6

SEG LOADMAP - EXTENT SECTION 1 1 - 4

SEG LOADMAP - PROCEDURE SYMBOL SECTION

1 1 - 5

SEG LOADMAP - SEGMENT ASSIGNMENT SECTION

1 1 - 4

SEG LOADMAP - UNDEFINED SYMBOLS SECTION

1 1 - 6

SEG LOADMAP CONTENTS 1 1 - 2

SEG LOADMAP OPTIONS 1 1 - 1

SEG LOADMAP ORDERING 1 1 - 6

SEG MESSAGES 6 - 6

SEG MODIFICATION SUB-PROCESSOR 1 1 - 1 7

SEG MODIFY SUBCOMMAND NEW 1 1 - 1 8

RETURN 1 1 - 1 9

SK 1 1 - 1 7 , 1 2 - 2 0

START 1 1 - 1 8

SEG USAGE 6 - 6

S E G ' S LOADER 6 - 1

ADVANCED FUNCTIONALITY
1 2 - 7

ACCESSING 6 - 7

FUNCTIONAL STRUCTURE 6-2

SEG, EXTENDED FEATURES 11-1

SEGMENT 6-1

SEGMENT '4000 6-1

SEGMENT '4001 6-3

SEGMENT '4002 6-3

SEGMENT ASSIGNMENT 11-10

SEGMENT ASSIGNMENT SECTION - SEG LOADMAP
11-4

SEGMENT BOUNDARIES SPANNED BY COMMON
4-15

SEGMENT SUBFILE 6-1

SEGMENT, DATA 6-3

SEGMENT, PROCEDURE 6-3

SEGMENTED ADDRESS 4-14

SEGMENTED PROGRAMS, LOADING 6-1

SEGMENTED RUNFILE SAVED BY SEG'S LOADER
7-2

SEGMENTED RUNFILES 6-1

SEGMENTS, PUBLIC 12-2

SEGMENTS, SHARED 12-2

SEGMENTS, SPLIT 12-4

SEQUENCE NUMBERS 15-3

SEQUENTIAL JOB PROCESSING ENVIRONMENT
1-10

SETBASE (LOADER COMMAND) 5-18

SETTING, A-REGISTER 4-3, 18-8

SETTING, B-REGISTER 4-3, 18-8

SHARE (PRIMOS COMMAND) 12-15

SHARE (SEG COMMAND) 12-11

SHARED CODE 12-1

SHARED EDITOR 12-1

SHARED LOAD SESSION 12-14

SHARED PROCEDURE 12-1

SHARED PROCEDURE, APPLICABILITY 12-1

SHARED SEGMENTS 12-1

SHARED SEGMENTS, INCORPORATING FILES INTO
12-15

SHORT INTEGER 4-16, 15-4, 18-5, 20-1

SIGN-EXTENSION 20-1

SINGLE (SEG COMMAND) 12-11

SINGLE-PRECISION NUMBER SEE REAL NUMBER

SK (SEG MODIFY SUBCOMMAND) 11-17, 12-20

SKIP, FLOATING-POINT 4-15

SLIST (PRIMOS COMMAND) 3-13

SORT CHARACTERISTICS 20-18

LIBRARY 20-18

- 13

INDEX

SORT PARAMETERS 20-18

REQUIREMENTS 20-19

SUBROUTINES 20-19

SOURCE ICOMPILER PARAMETER) 4-6, 18-6

SOURCE CODE FOR SHARED PROCEDURE 12-2

SOURCE FILE ffiEFINITION) 1-7

SOURCE PROGRAMS, ENTERING AND MANIPUIATING
3-1

SPECIAL CHARACTERS tEDITOR) 3-6

SPECIFICATION STATEMENTS 16-5

SPECIFICATIONS, INPUT/OUTPUT 18-8

SPECIFY INPUT/OUTPUT DEVICES 4-6

SPLIT ISEG LOADER SUBCOMMAND) 12-4

SPLIT SEGMENTS 12-4

SPLITTING OUT 12-11

SPLITTING SEGMENTS 12-4

SPLITTING SEGMENTS WITH EXTENSION STACKS
12-5

SPO ICOMPILER PARAMETER) 4-16, 18-6 .

SPOOL 4PR1MOS COMMAND) 3-13

SPOOL OPTIONS 3-13

STACK 6-3, 11-4

ISEG LOADER SUBCOMMAND) 11-9

DEFAULT 11-17

FRAME 11-5

LOCATION 6-9

LOCATION, CHANGING 11-17, 12-20

SEGMENTS, EXTENSION 12-19

SIZE, CHANGING 11-9 , 11-17 , 12-20

START IPRIMOS COMMAND) 7-2

START SEG MODIFY SUBCOMMAND) 11-18

START ADDRESS 7-2

STATEMENT FUNCTION 17-2

STATEMENTS 15-3

ASSIGNMENT 16-11

CODING 16-20

COMPILATION CONTROL 16-10

CONTROL 16-12

DEVICE CONTROL 16-30

EXTERNAL PROCEDURE 16-9

STATEMENTS, HEADER 16-4

IMPLEMENTED (LIST) 16-1

INPUT/OUTPUT 16-16

MODE SPECIFICATION 16-6

RUN-TIME CONTROL 16-10

SPECIFICATION 16-5

STORAGE 16-7

STATIC ALLOCATION OF STORAGE 4-15

STOP •FORTRAN STATEMENT) 16-16

STORAGE ALLOCATION, DYNAMIC 4-15

STORAGE ALLOCATION, STATIC 4-15

STORAGE STATEMENTS 16-7

STORAGE, LOCAL 4-15, 16-9

STRING MANIPULATION SUBROUTINES 20-22

STRUCTURE, FUNCTIONAL, SEG'S LOADER 6-2

SUB-UFD ^DEFINITION) 1-7

SUBCOMMANDS, LOADER, SEG 6-8

SUBFILE, SEGMENT 6-1

SUBROUTINE IFORTRAN STATEMENT) 16-4

SUBROUTINE CALLS »PORTRAN) 16-31

SUBROUTINE ERROR CODES 20-39

SUBROUTINE KEYS 20-39

SUBROUTINE STRUCTURE, FORTRAN 17-1

SUBROUTINE, COMBINATION 20-10

SUBROUTINE, EXIT 1-9

SUBROUTINE, PERMUTATION 20-17

SUBROUTINE, SEARCH 20-20

SUBROUTINES 17-3

DATE 20-22

FILE MANIPULATION 20-22

MATRIX OPERATIONS 20-10

OPERATING SYSTEM 20-40

RANDOM NUMBER 20-33

RECURSIVE 4-15, 12-3, 16-9

SORT 20-19

STRING MANIPULATION 20-22

TERMINAL I/O 20-22

TIME 20-22

USER-DEFINED 17-4

- 14

INDEX

SYMBOL (SEG LOADER SUBCOMMAND) 11-14

SYMBOL TABLE 6-2 , 11-4

SYMBOL, DEFINING A 11-14 , 11-15 , 12-6

SYMBOL, RESERVING SPACE FOR 11 -15 , 12-6

SYMBOLS, DEFINED, EXPUNGING 12-10

SYMBOLS, PROGRAM 4-11

SYSTEM CONSTANTS B-l

SYSTEM DEFAULTS B-l

SYSTEM PROGRAM OPTIMIZATION 4-16

SYSTEM RESOURCES SUPPORTING FORTRAN
1-13

SYSTEMS LEVEL COMMANDS, LOADER 5-21

SYSTEMS, OTHER, INTERFACE TO 13-1

TAB SETTINGS 3-7

TABLE, SYMBOL 6 - 2 , 11-4

TABULATION 3-5

TAPE, MAGNETIC, READING 3-3

TAPE, PAPER, PUNCHED, READING 3-5

TEMPLATE, MIDAS 13-2

TERMINAL FUNCTIONS 1-5

TERMINAL T/o SUPROUTINES 20-22

TERMINAL LISTING 3-13

TIME (SEG COMMAND) 11-20

TIME SUBROUTINES 20-22

TRACE (COMPILER PARAMETER) 4 -12 , 18-7

TRACE (FORTRAN STATEMENT) 16-10

TRACE CODING 4-12

TRACE, AREA 16-10

TRACE, ITEM 16-10

TRANSFORMING SEGMENTS INTO R-MODE RUNFILES
12-11

TRANSFORMING USER SEGMENTS INTO R-MODE
RUNFILES 12-11

TRANSLATION, REPRESENTATION 3-4

TREDEL (FUTIL COMMAND) 6 - 1 , 6-10

TREENAME (DEFINITION) 1-7

TREENAMES IN SEG 6-3

TWO-CHARACTER ID 12-11

TYPOGRAPHIC CONVENTIONS 1-5

UFD (DEFINITION) 1-6

UFD=CMDNC0 SEE COMMAND UFD

UII 5 - 1 , 5-19

UII LIBRARY 5-20

UNASSIGN (PRIMOS COMMAND) 3-2

UNCONDITIONAL GO TO 16-14

UNDECLARED VARIABLES, FLAGGING 4 - 1 5 ,
18-1

UNDEFINED SYMBOLS SECTION - SEG LOADMAP
11-6

UNIMPLEMENTED INSTRUCTION INTERRUPT 5-1

UNIT NUMBERS, FORTRAN 16-17

UNSATISFIED REFERENCES 6 - 9 , 11-6

UPDATS (MIDAS SUBROUTINE) 13-7

USAGE, MEMORY 4-14

USE OF COLUMN 6 15-3

USE OF OVER 64K WORD COMMON 12-16

USEFUL TECHNIQUES (EDITOR) 3-7

USER ADDRESS SPACE, CLEARING 5-2

USER FILE DIRECTORY (DEFINITION) 1-6

USER-DEFINED FUNCTION SUBPROGRAMS 17-1

USER-DEFINED SUBROUTINES 17-4

USING SEG 6-6

USING THE COMPILER 3-1

USING THE EDITOR 3-5

USING THE LOADER UNDER PRIMOS 5-4

V-IDENTITY 4-1

VARIABLE 15-6

VARIABLES, FORMATS AS 16-26

VARIABLES, UNDECLARED, FLAGGING 4-15

VESTIGIAL COMMANDS, SEG 6-5

VIRTUAL LOADER 6-1

VIRTUALBASE (LOADER COMMAND) 5-22

VLOAD (SEG COMMAND) 6-7

VLOAD * (SEG COMMAND) 11-7

VOLUME NAME (DEFINITION) 1-7

WORD 1-8

WRITE (FORTRAN STATEMENT) 16-19

WRITE USER SEGMENTS TO DISK 11-18

WRITE, BINARY 16-20

WRITE, FORMATTED 16-19

X - 15

INDEX

WRITING MAPS TO A FILE 5-13

XPUNGE (LOADER COMMAND) 5-22

XPUNGE (SEG LOADER SUBCOMMAND) 12-10

XREFL (COMPILER PARAMETER) 4-11, 18-7

XREFS (COMPILER PARAMETER) 4-11, 18-7

~ >

~ >

^

X - 16

	Front Cover
	i-1
	i-2
	Table of Contents
	i-3
	i-4
	i-5
	i-6
	i-7
	Part I
	Overview
	Section 1
	Overview
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	Part II
	Using FORTRAN Under PRIMOS
	Section 2
	Accessing PRIMOS
	2-1
	Section 3
	Entering and Manipulating Source Programs
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	Section 4
	Compiling
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	Section 5
	Linking and Loading
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	Section 6
	Loading Segmented Programs
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	Section 7
	Executing Programs
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	Section 8
	Debugging
	8-1
	Part III
	Advanced Programming Techniques
	Section 9
	Operating System Features
	9-1
	Section 10
	File System Features
	10-1
	Section 11
	Extended Features of SEG
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	Section 12
	Shared Code and Other Advanced Segmented Program Techniques
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	Section 13
	Interface To Other Systems and Languages
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	Section 14
	Optimization and Other Helpful Hints
	14-1
	Part IV
	FORTRAN Language Reference
	Section 15
	FORTRAN Language Elements
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	Section 16
	FORTRAN Statements
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	Section 17
	FORTRAN Function and Subroutine Function
	17-1
	17-2
	17-3
	17-4
	Part V
	Utility Reference
	Section 18
	Compiler Reference
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	18-14
	Section 19
	SEG Command Reference
	19-1
	19-2
	19-3
	19-4
	19-5
	19-6
	19-7
	19-8
	19-9
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	Section 20
	Libraries Reference
	20-1
	20-2
	20-3
	20-4
	20-5
	20-6
	20-7
	20-8
	20-9
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	20-32
	20-33
	20-34
	20-35
	20-36
	20-37
	20-38
	20-39
	20-40
	20-41
	20-42
	20-43
	20-44
	20-45
	20-46
	20-47
	PTU 47 - Rev. 15 FORTRAN
	PTU47-1
	PTU47-2
	PTU47-3
	PTU47-4
	PTU47-5
	PTU47-6
	PTU47-7
	PTU47-8
	PTU47-9
	PTU47-10
	PTU47-11
	PTU47-12
	PTU47-13
	PTU47-14
	PTU47-15
	PTU47-16
	PTU47-17
	PTU47-18
	PTU47-19
	PTU47-20
	PTU47-21
	PTU47-22
	Appendices
	Appendix A
	Error Messages
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	Appendix B
	System Defaults and Constants
	B-1
	B-1
	Appendix C
	ASCII Character Set
	C-1
	C-2
	C-3
	C-4
	C-5
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16

